當前位置:首頁 » 童話故事 » 中國古代的歷史數學故事100字左右

中國古代的歷史數學故事100字左右

發布時間: 2020-11-30 16:56:01

㈠ 中國數學歷史

一、中國數學的起源與早期發展

據《易·系辭》記載:「上古結繩而治,後世聖人易之以書契」。在殷墟出土的甲骨文卜辭中有很多記數的文字。從一到十,及百、千、萬是專用的記數文字,共有13個獨立符號,記數用合文書寫,其中有十進制制的記數法,出現最大的數字為三萬。

算籌是中國古代的計算工具,而這種計算方法稱為籌算。算籌的產生年代已不可考,但可以肯定的是籌算在春秋時代已很普遍。

用算籌記數,有縱、橫兩種方式:

表示一個多位數字時,採用十進位值制,各位值的數目從左到右排列,縱橫相間〔法則是:一縱十橫,百立千僵,千、十相望,萬、百相當〕,並以空位表示零。算籌為加、減、乘、除等運算建立起良好的條件

籌算直到十五世紀元朝末年才逐漸為珠算所取代,中國古代數學就是在籌算的基礎上取得其輝煌成就的。

在幾何學方面《史記·夏本記》中說夏禹治水時已使用了規、矩、准、繩等作圖和測量工具,並早已發現「勾三股四弦五」這個勾股定理〔西方稱勾股定理〕的特例。戰國時期,齊國人著的《考工記》匯總了當時手工業技術的規范,包含了一些測量的內容,並涉及到一些幾何知識,例如角的概念。

戰國時期的百家爭鳴也促進了數學的發展,一些學派還總結和概括出與數學有關的許多抽象概念。著名的有《墨經》中關於某些幾何名詞的定義和命題,例如:「圓,一中同長也」、「平,同高也」等等。墨家還給出有窮和無窮的定義。《莊子》記載了惠施等人的名家學說和桓團、公孫龍等辯者提出的論題,強調抽象的數學思想,例如「至大無外謂之大一,至小無內謂之小一」、「一尺之棰,日取其半,萬世不竭」等。這些許多幾何概念的定義、極限思想和其它數學命題是相當可貴的數學思想,但這種重視抽象性和邏輯嚴密性的新思想未能得到很好的繼承和發展。

此外,講述陰陽八卦,預言吉凶的《易經》已有了組合數學的萌芽,並反映出二進制的思想。

二、中國數學體系的形成與奠基

這一時期包括從秦漢、魏晉、南北朝,共400年間的數學發展歷史。秦漢是中國古代數學體系的形成時期,為使不斷豐富的數學知識系統化、理論化,數學方面的專書陸續出現。

現傳中國歷史最早的數學專著是1984年在湖北江陵張家山出土的成書於西漢初的漢簡《算數書》,與其同時出土的一本漢簡歷譜所記乃呂後二年(公元前186年),所以該書的成書年代至晚是公元前186年(應該在此前)。

西漢末年〔公元前一世紀〕編纂的《周髀算經》,盡管是談論蓋天說宇宙論的天文學著作,但包含許多數學內容,在數學方面主要有兩項成就:(1)提出勾股定理的特例及普遍形式;(2)測太陽高、遠的陳子測日法,為後來重差術(勾股測量法)的先驅。此外,還有較復雜的開方問題和分數運算等。

《九章算術》是一部經幾代人整理、刪補和修訂而成的古代數學經典著作,約成書於東漢初年〔公元前一世紀〕。全書採用問題集的形式編寫,共收集了246個問題及其解法,分屬於方田、粟米、衰分、少廣、商功、均輸、盈不足、方程和勾股九章。主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《方程》章中所引入的負數概念及正負數加減法法則,在世界數學史上都是最早的記載;書中關於線性方程組的解法和現在中學講授的方法基本相同。就《九章算術》的特點來說,它注重應用,注重理論聯系實際,形成了以籌算為中心的數學體系,對中國古算影響深遠。它的一些成就如十進制值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過這些國家傳到歐洲,促進了世界數學的發展。

魏晉時期中國數學在理論上有了較大的發展。其中趙爽(生卒年代不詳)和劉徽(生卒年代不詳)的工作被認為是中國古代數學理論體系的開端。三國吳人趙爽是中國古代對數學定理和公式進行證明的最早的數學家之一,對《周髀算經》做了詳盡的注釋,在《勾股圓方圖注》中用幾何方法嚴格證明了勾股定理,他的方法已體現了割補原理的思想。趙爽還提出了用幾何方法求解二次方程的新方法。263年,三國魏人劉徽注釋《九章算術》,在《九章算術注》中不僅對原書的方法、公式和定理進行一般的解釋和推導,系統地闡述了中國傳統數學的理論體系與數學原理,而且在其論述中多有創造,在卷1《方田》中創立割圓術(即用圓內接正多邊形面積無限逼近圓面積的辦法),為圓周率的研究工作奠定理論基礎和提供了科學的演算法,他運用「割圓術」得出圓周率的近似值為3927/1250(即3.1416);在《商功》章中,為解決球體積公式的問題而構造了「牟合方蓋」的幾何模型,為祖暅獲得正確結果開辟了道路;為建立多面體體積理論,運用極限方法成功地證明了陽馬術;他還撰著《海島算經》,發揚了古代勾股測量術----重差術。

南北朝時期的社會長期處於戰爭和分裂狀態,但數學的發展依然蓬勃。出現了《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作。約於公元四-五世紀成書的《孫子算經》給出「物不知數」問題並作了解答,導致求解一次同餘組問題在中國的濫暢;《張丘建算經》的「百雞問題」引出三個未知數的不定方程組問題。

公元五世紀,祖沖之、祖暅父子的工作在這一時期最具代表性,他們在《九章算術》劉徽注的基礎上,將傳統數學大大向前推進了一步,成為重視數學思維和數學推理的典範。他們同時在天文學上也有突出的貢獻。其著作《綴術》已失傳,根據史料記載,他們在數學上主要有三項成就:(1)計算圓周率精確到小數點後第六位,得到3.1415926 <π< 3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值,歐洲直到十六世紀德國人鄂圖(valentinus otto)和荷蘭人安托尼茲(a.anthonisz)才得出同樣結果;(2)祖暅在劉徽工作的基礎上推導出球體體積的正確公式,並提出"冪勢既同則積不容異"的體積原理,即二立體等高處截面積均相等則二體體積相等的定理。歐洲十七世紀義大利數學家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)發展了二次與三次方程的解法。

同時代的天文歷學家何承天創調日法,以有理分數逼近實數,發展了古代的不定分析與數值逼近演算法。

三、中國數學教育制度的建立

隋朝大興土木,客觀上促進了數學的發展。唐初王孝通撰《緝古算經》,主要是通過土木工程中計算土方、工程的分工與驗收以及倉庫和地窖計算等實際問題,討論如何以幾何方式建立三次多項式方程,發展了《九章算術》中的少廣、勾股章中開方理論。

隋唐時期是中國封建官僚制度建立時期,隨著科舉制度與國子監制度的確立,數學教育有了長足的發展。656年國子監設立算學館,設有算學博士和助教,由太史令李淳風等人編纂注釋《算經十書》〔包括《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《張丘建算經》、《夏侯陽算經》、《緝古算經》、《五曹算經》、《五經算術》和《綴術》〕,作為算學館學生用的課本。對保存古代數學經典起了重要的作用。

由於南北朝時期的一些重大天文發現在隋唐之交開始落實到歷法編算中,使唐代歷法中出現一些重要的數學成果。公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式,這在數學史上是一項傑出的創造,唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。

唐朝後期,計算技術有了進一步的改進和普及,出現很多種實用算術書,對於乘除演算法力求簡捷。

四、中國數學發展的高峰

唐朝亡後,五代十國仍是軍閥混戰的繼續,直到北宋王朝統一了中國,農業、手工業、商業迅速繁榮,科學技術突飛猛進。從公元十一世紀到十四世紀〔宋、元兩代〕,籌算數學達到極盛,是中國古代數學空前繁榮,碩果累累的全盛時期。這一時期出現了一批著名的數學家和數學著作,列舉如下:賈憲的《黃帝九章演算法細草》〔11世紀中葉〕,劉益的《議古根源》〔12世紀中葉〕,秦九韶的《數書九章》〔1247〕,李冶的《測圓海鏡》〔1248〕和《益古演段》〔1259〕,楊輝的《詳解九章演算法》〔1261〕、《日用演算法》〔1262〕和《楊輝演算法》〔1274-1275〕,朱世傑的《算學啟蒙》〔1299〕和《四元玉鑒》〔1303〕等等。 宋元數學在很多領域都達到了中國古代數學,也是當時世界數學的巔峰。其中主要的工作有:

公元1050年左右,北宋賈憲(生卒年代不詳)在《黃帝九章演算法細草》中創造了開任意高次冪的「增乘開方法」,公元1819年英國人霍納(william george horner)才得出同樣的方法。賈憲還列出了二項式定理系數表,歐洲到十七世紀才出現類似的「巴斯加三角」。(《黃帝九章演算法細草》已佚)

公元1088—1095年間,北宋沈括從「酒家積罌」數與「層壇」體積等生產實踐問題提出了「隙積術」,開始對高階等差級數的求和進行研究,並創立了正確的求和公式。沈括還提出「會圓術」,得出了我國古代數學史上第一個求弧長的近似公式。他還運用運籌思想分析和研究了後勤供糧與運兵進退的關系等問題。

公元1247年,南宋秦九韶在《數書九章》中推廣了增乘開方法,敘述了高次方程的數值解法,他列舉了二十多個來自實踐的高次方程的解法,最高為十次方程。歐洲到十六世紀義大利人菲爾洛(scipio del ferro)才提出三次方程的解法。秦九韶還系統地研究了一次同餘式理論。

公元1248年,李冶(李治,公元1192一1279年)著的《測圓海鏡》是第一部系統論述「天元術」(一元高次方程)的著作,這在數學史上是一項傑出的成果。在《測圓海鏡?序》中,李冶批判了輕視科學實踐,以數學為「九九賤技」、「玩物喪志」等謬論。

公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。

公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(etienne bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(james gregory)和公元1676一1678年間牛頓(issac newton)才提出內插法的一般公式。

公元十四世紀我國人民已使用珠算盤。在現代計算機出現之前,珠算盤是世界上簡便而有效的計算工具。

五、中國數學的衰落與日用數學的發展

這一時期指十四世紀中葉明王朝建立到明末的1582年。數學除珠算外出現全面衰弱的局面,當中涉及到中算的局限、十三世紀的考試制度中已刪減數學內容、明代大興八段考試制度等復雜的問題,不少中外數學史家仍探討當中涉及的原因。

明代最大的成就是珠算的普及,出現了許多珠算讀本,及至程大位的《直指演算法統宗》〔1592〕問世,珠算理論已成系統,標志著從籌算到珠算轉變的完成。但由於珠算流行,籌算幾乎絕跡,建立在籌算基礎上的古代數學也逐漸失傳,數學出現長期停滯。

六、西方初等數學的傳入與中西合璧

十六世紀末開始,西方傳教士開始到中國活動,由於明清王朝制定天文歷法的需要,傳教士開始將與天文歷算有關的西方初等數學知識傳入中國,中國數學家在「西學中源」思想支配下,數學研究出現了一個中西融合貫通的局面。

十六世紀末,西方傳教士和中國學者合譯了許多西方數學專著。其中第一部且有重大影響的是義大利傳教士利馬竇和徐光啟合譯的《幾何原本》前6卷〔1607〕,其嚴謹的邏輯體系和演譯方法深受徐光啟推崇。徐光啟本人撰寫的《測量異同》和《勾股義》便應用了《幾何原本》的邏輯推理方法論證中國的勾股測望術。此外,《幾何原本》課本中絕大部份的名詞都是首創,且沿用至今。在輸入的西方數學中僅次於幾何的是三角學。在此之前,三角學只有零星的知識,而此後獲得迅速發展。介紹西方三角學的著作有鄧玉函編譯的《大測》〔2卷,1631〕、《割圓八線表》〔6卷〕和羅雅谷的《測量全義》〔10卷,1631〕。在徐光啟主持編譯的《崇禎歷書》〔137卷,1629-1633〕中,介紹了有關圓椎曲線的數學知識。

入清以後,會通中西數學的傑出代表是梅文鼎,他堅信中國傳統數學「必有精理」,對古代名著做了深入的研究,同時又能正確對待西方數學,使之在中國紮根,對清代中期數學研究的高潮是有積極影響的。與他同時代的數學家還有王錫闡和年希堯等人。 清康熙帝愛好科學研究,他「御定」的《數理精蘊》〔53卷,1723〕,是一部比較全面的初等數學書,對當時的數學研究有一定影響。

七、傳統數學的整理與復興

乾嘉年間形成一個以考據學為主的干嘉學派,編成《四庫全書》,其中數學著作有《算經十書》和宋元時期的著作,為保存瀕於湮沒的數學典籍做出重要貢獻。

在研究傳統數學時,許多數學家還有發明創造,例如有「談天三友」之稱的焦循、汪萊及李銳作出不少重要的工作。李善蘭在《垛積比類》〔約1859〕中得到三角自乘垛求和公式,現在稱之為「李善蘭恆等式」。這些工作較宋元時期的數學進了一步。阮元、李銳等人編寫了一部天文學家和數學家傳記《疇人傳》46卷〔1795-1810〕,開數學史研究之先河。

八、西方數學再次東進

1840年鴉戰爭後,閉關鎖國政策被迫中止。同文館內添設「算學」,上海江南製造局內添設翻譯館,由此開始第二次翻譯引進的高潮。主要譯者和著作有:李善蘭與英國傳教士偉烈亞力合譯的《幾何原本》後9卷〔1857〕,使中國有了完整的《幾何原本》中譯本;《代數學》13卷〔1859〕;《代微積拾級》18卷〔1859〕。李善蘭與英國傳教士艾約瑟合譯《圓錐曲線說》3卷,華蘅芳與英國傳教士傅蘭雅合譯《代數術》25卷〔1872〕,《微積溯源》8卷〔1874〕,《決疑數學》10卷〔1880〕等。在這些譯著中,創造了許多數學名詞和術語,至今仍在應用。 1898年建立京師大學堂,同文館並入。1905年廢除科舉,建立西方式學校教育,使用的課本也與西方其它各國相仿。

九、中國現代數學的建立

這一時期是從20世紀初至今的一段時間,常以1949年新中國成立為標志劃分為兩個階段。

中國近現代數學開始於清末民初的留學活動。較早出國學習數學的有1903年留日的馮祖荀,1908年留美的鄭之蕃,1910年留美的胡明復和趙元任,1911年留美的姜立夫,1912年留法的何魯,1913年留日的陳建功和留比利時的熊慶來〔1915年轉留法〕,1919年留日的蘇步青等人。他們中的多數回國後成為著名數學家和數學教育家,為中國近現代數學發展做出重要貢獻。其中胡明復1917年取得美國哈佛大學博士學位,成為第一位獲得博士學位的中國數學家。隨著留學人員的回國,各地大學的數學教育有了起色。最初只有北京大學1912年成立時建立的數學系,1920年姜立夫在天津南開大學創建數學系,1921年和1926年熊慶來分別在東南大學〔今南京大學〕和清華大學建立數學系,不久武漢大學、齊魯大學、浙江大學、中山大學陸續設立了數學系,到1932年各地已有32所大學設立了數學系或數理系。1930年熊慶來在清華大學首創數學研究部,開始招收研究生,陳省身、吳大任成為國內最早的數學研究生。三十年代出國學習數學的還有江澤涵〔1927〕、陳省身〔1934〕、華羅庚〔1936〕、許寶騤〔1936〕等人,他們都成為中國現代數學發展的骨幹力量。同時外國數學家也有來華講學的,例如英國的羅素〔1920〕,美國的伯克霍夫〔1934〕、奧斯古德〔1934〕、維納〔1935〕,法國的阿達馬〔1936〕等人。1935年中國數學會成立大會在上海召開,共有33名代表出席。1936年〈中國數學會學報〉和《數學雜志》相繼問世,這些標志著中國現代數學研究的進一步發展。 解放以前的數學研究集中在純數學領域,在國內外共發表論著600餘種。在分析學方面,陳建功的三角級數論,熊慶來的亞純函數與整函數論研究是代表作,另外還有泛函分析、變分法、微分方程與積分方程的成果;在數論與代數方面,華羅庚等人的解析數論、幾何數論和代數數論以及近世代數研究取得令世人矚目的成果;在幾何與拓撲學方面,蘇步青的微分幾何學,江澤涵的代數拓撲學,陳省身的纖維叢理論和示性類理論等研究做了開創性的工作:在概率論與數理統計方面,許寶騤在一元和多元分析方面得到許多基本定理及嚴密證明。此外,李儼和錢寶琮開創了中國數學史的研究,他們在古算史料的注釋整理和考證分析方面做了許多奠基性的工作,使我國的民族文化遺產重放光彩。

1949年11月即成立中國科學院。1951年3月《中國數學學報》復刊〔1952年改為《數學學報》〕,1951年10月《中國數學雜志》復刊〔1953年改為《數學通報》〕。1951年8月中國數學會召開建國後第一次國代表大會,討論了數學發展方向和各類學校數學教學改革問題。

建國後的數學研究取得長足進步。50年代初期就出版了華羅庚的《堆棧素數論》〔1953〕、蘇步青的《射影曲線概論》〔1954〕、陳建功的《直角函數級數的和》〔1954〕和李儼的《中算史論叢》5集〔1954-1955〕等專著,到1966年,共發表各種數學論文約2萬余篇。除了在數論、代數、幾何、拓撲、函數論、概率論與數理統計、數學史等學科繼續取得新成果外,還在微分方程、計算技術、運籌學、數理邏輯與數學基礎等分支有所突破,有許多論著達到世界先進水平,同時培養和成長起一大批優秀數學家。

60年代後期,中國的數學研究基本停止,教育癱瘓、人員喪失、對外交流中斷,後經多方努力狀況略有改變。1970年《數學學報》恢復出版,並創刊《數學的實踐與認識》。1973年陳景潤在《中國科學》上發表《大偶數表示為一個素數及一個不超過二個素數的乘積之和》的論文,在哥德巴赫猜想的研究中取得突出成就。此外中國數學家在函數論、馬爾可夫過程、概率應用、運籌學、優選法等方面也有一定創見。

1978年11月中國數學會召開第三次代表大會,標志著中國數學的復甦。1978年恢復全國數學競賽,1985年中國開始參加國際數學奧林匹克數學競賽。1981年陳景潤等數學家獲國家自然科學獎勵。1983年國家首批授於18名中青年學者以博士學位,其中數學工作者佔2/3。1986年中國第一次派代表參加國際數學家大會,加入國際數學聯合會,吳文俊應邀作了關於中國古代數學史的45分鍾演講。近十幾年來數學研究碩果累累,發表論文專著的數量成倍增長,質量不斷上升。1985年慶祝中國數學會成立50周年年會上,已確定中國數學發展的長遠目標。代表們立志要不懈地努力,爭取使中國在世界上早日成為新的數學大國。

不用給分啦~純屬義務勞動

㈡ 中國古代有哪些數學貢獻

400字根本說不完,我刪了又刪還剩這么多,不好意思了。

《九章算術》在中國古代數學發展過程中佔有非常重要的地位。它經過許多人整理而成,大約成書於東漢時期。全書共收集了246個數學問題並且提供其解法,主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《九章算術》在世界數學史上最早提出負數概念及正負數加減法法則;現在中學講授的線性方程組的解法和《九章算術》介紹的方法大體相同。
中國古代數學在三國及兩晉時期側重於理論研究,其中以趙爽與劉徽為主要代表人物。 趙爽在《勾股圓方圖注》中,用幾何方法證明了勾股定理,其實這已經體現「割補原理」的方法。用幾何方法求解二次方程也是趙爽對中國古代數學的一大貢獻。三國時期魏人劉徽則注釋了《九章算術》,其著作《九章算術注》不僅對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且系統地闡述了中國傳統數學的理論體系與數學原理,並且多有創造。其發明的「割圓術」(圓內接正多邊形面積無限逼近圓面積),為圓周率的計算奠定了基礎,同時劉徽還算出圓周率的近似值——「3927/1250(3.1416)」。他設計的「牟合方蓋」的幾何模型為後人尋求球體積公式打下重要基礎。在研究多面體體積過程中,劉徽運用極限方法證明了「陽馬術」。
南北朝祖沖之、祖暅父子取得如下成就:①圓周率精確到小數點後第六位,得到3.1415926<π<3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值;歐洲直到16世紀德國人鄂圖(Otto)和荷蘭人安托尼茲(Anthonisz)才得出同樣結果。②祖暅在劉徽工作的基礎上推導出球體體積公式,並提出二立體等高處截面積相等則二體體積相等(「冪勢既同則積不容異」)定理;歐洲17世紀義大利數學家卡瓦列利(Cavalieri)才提出同一定理。
公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式;唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。
賈憲在《黃帝九章演算法細草》中提出開任意高次冪的「增乘開方法」,同樣的方法至1819年才由英國人霍納發現;賈憲的二項式定理系數表與17世紀歐洲出現的「巴斯加三角」是類似的。
秦九韶是南宋時期傑出的數學家。1247年,他在《數書九章》中將「增乘開方法」加以推廣,論述了高次方程的數值解法,並且例舉20多個取材於實踐的高次方程的解法(最高為十次方程)。16世紀義大利人菲爾洛才提出三次方程的解法。另外,秦九韶還對一次同餘式理論進行過研究。
李冶於1248年發表《測圓海鏡》,該書是首部系統論述「天元術」(一元高次方程)的著作,在數學史上具有里程碑意義。尤其難得的是,在此書的序言中,李冶公開批判輕視科學實踐活動,將數學貶為「賤技」、「玩物」等長期存在的士風謬論。
公元1261年,南宋楊輝在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。
公元1303年,元代朱世傑著《四元玉鑒》,把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(Bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(Gregory)和公元1676一1678年間牛頓(Newton)才提出內插法的一般公式。

㈢ 中國古代數學的歷史

春秋前中國數學的萌芽
我們的先民在從野蠻走向文明的漫長歷程中,逐漸認識了數與形的概念。出土的新石器時期的陶器大多為圓形或其他規則形狀,陶器上有各種幾何圖案,通常還有三個著地點,都是幾何知識的萌芽。先秦典籍中有「隸首作數」、「結繩記事」、「刻木記事」的記載,說明人們從辨別事物的多寡中逐漸認識了數,並創造了記數的符號。殷商甲骨文(公元前14—前11世紀)中已有13個記數單字,最大的數是「三萬」,最小的是「一」。一、十、百、千、萬,各有專名。其中已經蘊含有十進位置值制萌芽。傳說伏羲創造了畫圓的「規」、畫方的「矩」,也傳說黃帝臣子倕[chui垂]是「規矩」和「准繩」的創始人。早在大禹治水時,禹便「左准繩」(左手拿著准繩),「右規矩」(右手拿著規矩)(《史記·禹本紀》)。因此,我們可以說,「規」、「矩」、「准」、「繩」是我們祖先最早使用的數學工具。人們丈量土地面積,測算山高谷深,計算產量多少,粟米交換,制定歷法,都需要數學知識。《周髀〔bi婢〕算經》載商高答周公問,提到用矩測望高深廣遠。相傳西周初年周公(公元前11世紀)制禮,數學成為貴族子弟教育中六門必修課程——六藝之一。不過當時學在官府,數學的發展是相當緩慢的。
春秋時期,隨著鐵器的出現,生產力的提高,中國開始了由奴隸制向封建制的過渡。新的生產關系促進了科學技術的發展與進步。此時王權衰微,疇人四散,私學開始出現。最晚在春秋末年人們已經掌握了完備的十進位置值制記數法,普遍使用了算籌這種先進的計算工具。人們已諳熟九九乘法表、整數四則運算,並使用了分數。
戰國至兩漢中國數學框架的確立
戰國時期,各諸侯國相繼完成了向封建制度的過渡。思想界、學術界諸子林立,百家爭鳴,異常活躍,為數學和科學技術的發展創造了良好的條件。盡管沒有一部先秦的數學著作留傳到後世,但是,人們通過田地及國土面積的測量,粟米的交換,收獲及戰利品的分配,城池的修建,水利工程的設計,賦稅的合理負擔,產量的計算,以及測高望遠等生產生活實踐,積累了大量的數學知識。據東漢初鄭眾記載,當時的數學知識分成了方田、粟米、差分、少廣、商功、均輸、方程、贏不足、旁要九個部分,稱為「九數」。九數確立了《九章算術》的基本框架。
秦始皇結束了列國紛爭,首次建立了中央集權的封建帝國,本應有利於數學的發展。但他的專制政策窒息了百家爭鳴的學術空氣。秦朝的殘暴統治,尤其是焚書坑儒,給中國文化事業造成空前的浩劫。不久,劉邦利用推翻暴秦的農民起義,統一了中國,建立了漢朝,史稱西漢。西漢政府與民生息,社會生產力得到恢復、發展,給數學和科學技術的發展帶來新的活力,人們提出了若干算術難題,並創造了解勾股形、重差等新的數學方法。同時,人們注重先秦文化典籍的收集、整理。作為數學新發展及先秦典籍的搶救工作的結晶,便是《九章算術》的成書。《九章算術》(省稱《九章》)是中國最重要的數學經典,它之於中國和東方數學,大體相當於《幾何原本》之於希臘和歐洲數學。在世界古代數學史上,《九章》與《原本》像兩顆璀燦的明珠,東西輝映。
《九章》之前還有一部《周髀算經》,它本是一部以數學方法闡述蓋天說的天文著作,一般認為於公元前1世紀成書。卷上記載了商高答周公問,陳子答榮方問。前者有勾股定理的特例32+42=52,後者有用勾股定理及比例演算法測太陽高遠及直徑的內容。近年湖北省張家山出土的竹簡《算數書》正在整理,其少廣一問與《九章》少廣章第1問基本相同,兩者的關系有待於研究。
《九章》集先秦到西漢數學知識之大成。據東漢末大學者鄭玄(公元127—200年)引東漢初鄭眾(?—公元83年)說,西漢在先秦九數基礎上又發展出勾股、重差兩類數學方法。魏劉徽說:《九章》是由九數發展而來的,由於秦朝焚書而散壞。西漢張蒼(?—公元前152年)、耿壽昌(公元前1世紀)收集秦火遺殘,加以整理刪補,便成為《九章算術》。方田章提出了完整的分數運演算法則,各種多邊形、圓、弓形等的面積公式;粟米章提出了比例演算法;衰[cui崔]分①章提出了比例分配法則;少廣章給出了完整的開平方、開立方程序;商功章討論各種立體體積公式及工程分配方法;均輸章解決賦役中的合理負擔,也是比例分配問題,還有若干結合西漢社會實際的算術雜題;盈不足章解決盈虧問題及可以用盈不足術解決的一般算術問題;方程章是線性方程組解法,並給出了正負數加減法則;勾股章由旁要發展而成,提出了勾股定理、解勾股形及若干測望問題的方法。全書以計算為中心,有90餘條抽象性演算法、公式,246道例題及其解法,基本上採取演算法統率應用問題的形式。它的許多成就居世界領先地位,奠定了此後中國數學居世界前列千餘年的基礎。《九章》分類不甚合理,沒有任何定義和推導,少數公式不準確,個別公式有錯誤,則是不容諱言的缺點。《九章》的框架、形式、風格和特點深刻影響了中國和東方的數學。
《九章算術》成書後,注家蜂起。《漢書·藝文志》所載《許商算術》、《杜忠算術》(公元前1世紀)估計為研究《九章》的作品。東漢馬續、張衡、劉洪、鄭玄、徐岳、王粲等通曉《九章算術》,或為之作注。這些著作都未傳世,從後來劉徽(今山東鄒平人,生卒不詳)《九章算術注》所反映的信息看,這些研究基本上停留在歸納驗證《九章算術》的正確性方面,理論上未能在《九章》基礎上作出長足進步。
魏晉至唐初中國數學理論體系的建立
《九章算術》之後,中國的數學著述基本上採取兩種方式:一是為《九章算術》作注;二是以《九章算術》為楷模編纂新的著作。經過兩漢社會經濟和科學技術的大發展,到魏晉,中國封建社會進入一個新的階段,庄園農奴制和門閥士族占據了經濟政治舞台的中心。思想文化領域中,儒家的統治地位被削弱,讖緯迷信和繁瑣的經學退出歷史舞台,代之以談三玄——《周易》、《老子》、《莊子》為主的辯難之風。學者們通過析理,探討思維規律,思想界出現了戰國的百家爭鳴以來所未有過的生動局面。與此相適應,數學家重視理論研究,力圖把自先秦到兩漢積累起來的數學知識建立在必然的可靠的基礎之上。劉徽和他的《九章算術注》便是這個時代造就的最偉大的數學家和最傑出的數學著作。
大約與劉徽同時或稍前,有趙爽(又名嬰,字君卿,生卒不詳,估計是三國吳人)的《周髀算經注》,其可觀者為「勾股圓方圖」,用600餘字概括了兩漢以來勾股算術的成果。
劉徽《九章算術注》作於魏景元四年(公元263年),原十卷。前九卷全面論證了《九章》的公式、解法,發展了出入相補原理、截面積原理、齊同原理和率的概念,在圓面積公式和錐體體積公式的證明中引入了無窮小分割和極限思想,首創了求圓周率的正確方法,指出並糾正了《九章》的某些不精確的或錯誤的公式,探索出解決球體積的正確途徑,創造了解線性方程組的互乘相消法與方程新術,用十進分數逼近無理根的近似值等,使用了大量類比、歸納推理及演繹推理,並且以後者為主。第十卷原名重差,為劉徽自撰自注,發展完善了重差理論,此卷後來單行,因第一問為測望一海島的高遠,名之曰《海島算經》。他還著有《九章重差圖》一卷,已佚。劉徽生活在辯難之風興起而尚未流入清談的魏晉之交,受思想界「析理」的影響,對《九章算術》「析理以辭,解體用圖」(《九章算術注·序》),並對各種演算法進行總結分析,認為數學像一株枝條雖分而同本乾的大樹,發自一端,形成了一個完整的理論體系。劉徽博覽群書,諳熟諸子百家,他不迷信古人,敢於創新,實事求是。對他未能解決的牟合方蓋,坦誠直書,表示「以俟能言者」(《九章算術·少廣章注》),表現了一位偉大學者寄希望於後學的坦盪胸懷。
《孫子算經》三卷,常被誤認為春秋軍事家孫武所著,實際上是公元400年前後的作品,作者不詳。這是一部數學入門讀物,給出了籌算記數制度及乘除法則等預備知識,其河上盪杯、雞兔同籠等問題後來在民間廣泛流傳,「物不知數」題則開一次同餘式解法之先河。張丘建(今山東人,生平不詳)著的《張丘建算經》三卷,成書於北魏(5世紀下半葉)。此書補充了等差級數的若干公式,其百雞問題是著名的不定方程問題,後世十分重視。
《綴術》包含了祖沖之(公元429—500年)和兒子祖暅〔geng 更〕之(一作祖暅,生平不詳)的數學貢獻。由於其內容深奧,隋唐算學館學官(相當於今天大學數學系教授)讀不懂,遂失傳。據認為,將圓周率精確到八位有效數字、球體積的解決及含有負系數的二次、三次方程皆是其中的內容。祖沖之,字文遠,祖籍范陽逎(今河北省淶源縣)人。劉宋大明六年(公元462年)造大明歷,使用歲差,改革閏制。他的改革遭到守舊派官僚戴法興的反對,祖沖之不畏權勢,據理駁斥,堅持了反對讖緯迷信,不虛推古人,實事求是的科學精神。他對機械深有研究,製造過水碓、水磨、指南車、千里船、漏壺等,並著《安邊論》、《述異記》等。祖暅之,字景爍。從小愛好數學,巧思入神,極其精微。專心致志之時,雷霆不能入。有一次走路時思考問題,僕射徐勉迎面而來竟然沒有發現,頭撞到徐勉身上,徐勉喚他,他才知道撞了人。其父的《大明歷》經他的努力在梁朝頒行。
北周甄鸞(今河北無極人,生卒不詳)有三部數學著作傳世,即《五曹算經》、《五經算術》、《數術記遺》。前二部內容淺近,無足道者。《數術記遺》一卷,傳本題(東)漢徐岳撰、北周甄鸞注,近人多以為系甄鸞自撰自注,假託徐岳。書中記載了三種大數進位制及14種演算法,其中珠算雖不同於元明的珠算盤,然開後者之先河,似無可疑。
隋唐是中國封建社會經濟政治文化的鼎盛時期,然而數學上除天文歷法研究中劉焯(公元544—610年)創造等間距內插公式(7世紀初)和僧一行(公元683—727年)創造不等間距內插公式(8世紀)外,幾無創造,數學成就及理論水平遠遠低於魏晉南北朝。唐初王孝通(生卒不詳)撰《緝古算經》一卷,解決了若干復雜的土方工程及勾股問題,且都用三次或四次方程解決,是為現存記載三次、四次方程的最早著作。然而,《緝古算經》未必是高於《綴術》的著作。王孝通是歷算博士,曾任太史丞,在天文歷法方面是保守的。他在《上〈緝古算經〉表》中指責《綴術》全錯不通,於理未盡,大約他與當時別的數學家一樣讀不懂《綴術》。他自詡他的《緝古算經》千金不能排其一字,他一旦瞑目,其方法後人莫曉。科學家不必作謙謙君子,但如此狂妄,也是不足取的。
隋唐統治者在國子監設算學館,置算學博士、助教指導學生學習。唐李淳風等奉敕於顯慶元年(公元656年)為《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《夏侯陽算經》、《綴術》、《張丘建算經》、《五曹算經》、《五經算術》、《緝古算經》等十部算經作注,作為算學館教材,這就是著名的《算經十書》,該書是中國古代數學奠基時期的總結。李淳風等注釋保存了許多寶貴資料,但注釋水平並不高。由於種種原因,算學館實際未培養出像樣的數學家。
唐中葉至宋元中國數學的高潮
經過盛唐的大發展,唐中葉之後,生產關系和社會各方面逐漸產生新的實質性變革,到10世紀下半葉,趙匡胤建立宋朝,統一中國,中國封建社會進入了另一個新的階段,土地所有制以國有為主變為私有為主,租佃農民取代了魏唐的具有農奴身份的部曲、徒附。農業、手工業、商業和科學技術得到更大發展。中國古代四大發明,有三項——印刷術之廣泛應用及活字印刷,火葯用於戰爭,指南針用於航海——完成於唐中葉至北宋。宋秘書省於元豐七年(公元1084年)首次刊刻了《九章算術》等十部算經(時《夏侯陽算經》、《綴術》已失傳,因8世紀下半葉一部韓延《算術》開頭有「夏侯陽曰」雲雲而誤認為是前者而刻入,後者只好付之闕如),是世界上首次出現的印刷本數學著作。後來南宋數學家鮑澣之翻刻了這些刻本,有《九章算術》(半部)、《周髀算經》、《孫子算經》、《五曹算經》、《張丘建算經》五種及《數術記遺》等孤本流傳到現在,是目前世界上傳世最早的印刷本數學著作。宋元數學家賈憲、李冶、楊輝、朱世傑的著作,大都在成書後不久即刊刻。數學著作藉助印刷術得以空前廣泛的流傳,對傳播普及數學知識,其意義尤為深遠。
宋元數學高潮早在唐中葉已見端倪。隨著商業貿易的蓬勃發展,人們改進籌算乘除法,新、舊《唐書》記載了大量這類書籍,可惜絕大多數失傳,只有韓延(生平不詳)《算術》(8世紀)以《夏侯陽算經》的名義流傳下來,該書提出了若干化乘除為加減的捷演算法,並在運算中使用了十進小數,極可寶貴。
11世紀上半葉賈憲(生平不詳)撰《黃帝九章算經細草》,是為北宋最重要的數學著作。賈憲曾任左班殿直(低級武官),是當時著名天文學家、數學家楚衍的學生。還著有《演算法𢽾古集》二卷,已佚。他將《九章算術》未離開題設具體對象甚至數值的術文大都抽象成一般性術文,提高了《九章算術》的理論水平;他對某些類型的數學問題進行概括,比如提出開方作法本源即賈憲三角,作為他提出的立成釋鎖(即開方)法的算表,這是開方問題的綱;他提出了若干新的重要方法,其中最突出的是創造增乘開方法,並提出了開四次方的程序。賈憲的思想與方法對宋元數學影響極大,是宋元數學的主要推動者之一。《黃帝九章算經細草》因被楊輝《詳解九章演算法》抄錄而大部分保存了下來(闕卷一、二及卷三上半部,卷五的一部分)。
大科學家沈括(公元1031—1095年)對數學有獨到的貢獻。在《夢溪筆談》中首創隙積術,開高階等差級數求和問題之先河,又提出會圓術,首次提出求弓形弧長的近似公式。
12世紀北宋劉益(生平不詳)撰《議古根源》,亦失傳。楊輝《田畝比類乘除捷法》引用了它的若干題目與方法。《綴術》失傳之後,開方式的系數仍皆為正數,劉益突破了這個限制,首先引入負系數方程,並創造了益積開方術與減從開方術求其正根,楊輝譽之為「實冠前古」。
1127年金朝入主中原,趙宋南遷,史稱南宋。1234年,蒙古貴族滅金,後來建立元朝。1279年元滅南宋,佔領中國。13世紀中葉至14世紀初,是宋元數學高潮的集中體現,也是中國歷史上留下重要數學著作最多的半個世紀,並形成了南宋統治下的長江中下游與金元統治下的太行山兩側兩個數學中心。
南方中心以秦九韶、楊輝為代表,以高次方程數值解法、同餘式解法及改進乘除捷演算法的研究為主。北方中心則以李冶為代表,以列高次方程的天元術及其解法為主。元統一中國後的朱世傑,則集南北兩個數學中心之大成,達到了中國籌算的最高水平。
1247年秦九韶撰成《數書九章》18卷。秦九韶,字道古,自稱魯郡(今山東省)人,約1202年生於普州安岳縣(今四川省)。他生活在宋元激烈斗爭的南宋末年,並捲入了南宋統治集團戰和兩派的斗爭,支持抗戰派吳潛,屢遭劉克庄等人彈劾。賈似道專權後被貶到梅州(今廣東省),不久(約公元1261年)死於任所,並在死後被追隨賈似道的周密丑詆不堪。他天資聰明好學,對數學、天文、土木建築、詩詞、音律、弓馬等都十分精通。他多次呼籲統治者施仁政,並把數學知識看成開源節流、施仁政、利國利民的有力工具。《數書九章》分大衍、天時、田域、測望、賦役、錢谷、營建、軍旅、市易九類81題,其成就之大,題設之復雜都超過以往算經,有的問題有88個條件,有的答案多達180條,軍事問題之多也是空前的,反映了秦氏對抗元戰爭的關注。大衍總數術系統解決了一次同餘式組解法;正負開方術把以增乘開方法為主導的求高次方程正根的方法發展到十分完備的程度,有的方程高達十次;線性方程組解法完全以互乘相消法取代直除法;提出了與海倫公式等價的三斜求積公式;使用了完整的十進小數表示法,等等,都是其傑出成就。
楊輝共撰五部數學著作,傳世的有四部,居元以前數學家之冠。楊輝,字謙光,錢塘(今杭州市)人,生平不詳,只知在今江浙一帶管錢糧,為政清廉。與其他大家比較,他的著作偏重於教育與普及。1261年,楊輝在劉徽注、李淳風等注釋、賈憲細草的《九章算術》基礎上作解題、比類,並補充了圖、乘除、纂類三卷,是為《詳解九章演算法》,今圖、乘除、方田、粟米、衰分上半部、商功之一部分已佚。商功章的比類中的垛積術發展了沈括的隙積術;「纂類」則打破了《九章算術》的分類格局,按方法分成乘除、互換、合率、分率、衰分、疊積、盈不足、方程、勾股九類。1262年又撰《日用演算法》,著重於改進乘除捷演算法,只有少量題目保存下來。1274年撰《乘除通變本末》三卷。卷上的「習算綱目」是一個從啟蒙到《九章》主要方法的數學教學計劃。本書還總結了九歸等乘除捷演算法及其口訣。次年編纂《田畝比類乘除捷法》二卷,引用了劉益的方法與題目,批評了《五曹算經》四不等田求法的錯誤。同年,編纂《續古摘奇演算法》二卷,對縱橫圖即幻方研究頗有貢獻。後三部書又常合稱為《楊輝演算法》。
十二、十三世紀,北方出現了許多天元術著作,大都失傳,流傳至今的最早的以天元術為主要方法的著作是李冶的《測圓海鏡》12卷(公元1248年)、《益古演段》三卷(公元1259年)。李冶(公元1192—1279年),字仁卿,號敬齋,真定欒城(今河北省)人,生於大興(今北京市)。其父為官清廉正直,李冶自幼受到良好的教養,且愛好數學,青年時便成為名重中原的學者,金詞賦科進士。入元,遂隱居於忻、崞〔guo郭〕(今山西省北部)一帶,在極為艱苦的條件下研究數學及各種學問,常粥𫘸〔zhan氈〕不繼,而聚書環堵。1251年起,主持封龍書院(今河北省)。1257、1260年兩次受到元主忽必烈召見,發表了立法度,正綱紀,進君子,退小人,減刑罰,止征戰,反對種族偏見的政治主張。他被聘為翰林學士。然而他羞於作唯天子、宰相之命是聽的御用文人,不久便以老病為辭回到封龍山。他一生文史著述頗多,僅存《敬齋古今黈》。《測圓海鏡》在洞淵九容基礎上考慮了勾股形與圓的10種基本關系,在卷二一十二中就15個勾股形與圓的關系提出了170個求圓徑長的問題,答案當然都相同。這些問題大都要用天元術列出方程。卷一是全書的理論基礎,包括圓城圖式、識別雜記等部分。圓城圖式以天、地、乾、坤等漢字表示點,是個創舉。識別雜記提出692條公式,除八條外都是正確的,集歷代勾股形與圓的關系研究之大成。《益古演段》64問,這是一部用天元術闡釋蔣周(可能是北宋人)《益古集》的方程列法的著作。其中保存了《益古集》的若干題目和舊術(方法)。
朱世傑有兩部重要著作《算學啟蒙》(公元1299年)、《四元玉鑒》(公元1303年)傳世。朱世傑,字漢卿,號松庭,燕山(今北京市)人,生平不詳。他在13世紀末以數學名家周遊全國20餘年,向他學習數學的人很多。《算學啟蒙》20門,259問,包括了從乘除及其捷演算法到增乘開方法、天元術等當時數學各方面的內容,形成了一個較完整的體系。《四元玉鑒》24門,288問,卷首給出古法七乘方圖(改進了的賈憲三角)等四種五幅圖,以及天元術、二元術、三元術、四元術的解法範例。創造四元消法,解決了多元高次方程組問題,以及高階等差級數求和問題,高次招差法問題,是本書最大的貢獻。此書是中國古代水平最高的數學著作。
楊輝、朱世傑等人對籌算乘除捷演算法的改進、總結,導致了珠算盤與珠算術的產生(大約在元中葉),完成了我國計算工具和計算技術的改革。元中後期,又出現了《丁巨演算法》、賈亨《演算法全能集》、何平子《詳明演算法》等改進乘除捷演算法的著作。
明清數學——從衰落到艱難的復興
元中葉之後,中國數學急劇衰落,元末的幾部著作只是對乘除捷演算法有所改進。明永樂年間(公元1403—1425年)修《永樂大典》,將前此的中國數學著作按起源、各種數學方法及音義、纂類等分類抄錄。漢唐宋元數學著作在明代大都散佚,清中葉修《四庫全書》,中國古算書多賴此重新面世。
明代八股取士,思想禁錮嚴重,學者們很少留心數學。顧應祥、唐順之是明代數學大家,全然不懂天元術和增乘開方法。景泰元年(公元1450年)吳敬撰《九章演算法比類大全》十卷,收集歷代應用題,亦拋棄了增乘開方法和天元術。元明之後,隨著籌算捷演算法的完備,珠算術產生並得到普及,明朝出現了一批有關珠算的著作。其最著者為程大位的《演算法統宗》(公元1592年),凡17卷,595問。此書適應商業發展的需要,以珠算為主要計算工具,並載有珠算開方法。此書在以後二、三百年問被多次翻刻、改編,流傳之廣是罕見的。程大位,字汝思,號渠賓,休寧(今黃山市屯溪區)人,曾在長江中下游地區經商,注意收集算經和數學問題,晚年撰成此書。
16世紀末,利瑪竇等歐洲傳教士來華,與徐光啟等一起翻譯《幾何原本》等著作。後來,傳教士們又引入了三角學、對數等西方初等數學,從此,中國數學開始了中西會通的階段。清朝260餘年,留下數學著作極多,都在不同程度上融會中西數學。
清宣城梅文鼎(公元1633—1721年)潛心於中西數學研究,著述甚多,其孫梅瑴成將他的著作編輯成《梅氏叢書輯要》60卷,其中數學著作13種40卷,內容遍及當時中國數學的各個門類,對清朝數學影響極大。
康熙皇帝愛好數學,他御定由梅瑴成、何國宗、明安圖、陳厚耀等編纂的《數理精蘊》53卷,全面系統地介紹了當時傳入的西方數學知識。上編立綱明體,為數理本源、幾何原本、算術原本等五卷;下編分條致用,為實用數學和借根方比例,以及對數、三角函數等40卷,表4種8卷,同樣對清朝數學產生了巨大影響。此書於雍正元年(公元1723年)印行。
1723年,雍正帝即位,認為傳教士不利於自己的統治,除少數供職於欽天監者外,將傳教士悉數趕到澳門。此後,西學的傳入遂告一段落,中國數學家一方面消化前此傳入的數學知識,一方面忙於整理中國古典數學著作。
1773年乾隆帝決定修《四庫全書》,戴震(公元1724—1777年)從《永樂大典》中輯出《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《五曹算經》、《五經算術》以及贗本《夏侯陽算經》等七部漢唐算經,並加校勘,《數書九章》、《測圓海鏡》、《四元玉鑒》等久佚的宋元算書也陸續輯出或發現,從此掀起了乾嘉時期(公元1736—1820年)研究整理中國古典數學的熱潮。古書注釋以李潢(?—公元1812年)《九章算術細草圖說》、羅士琳(公元1789—1853年)《四元玉鑒細草》影響較大。而開創性的研究則以焦循(公元1763—1820年)《里堂學算記》、汪萊(公元1768—1813年)《衡齋算學》、李銳(公元1768—1817年)《李氏算學遺書》最為有名。
18世紀初,法人杜德美(公元1668—1720年)傳入牛頓、格雷果里創造的三個三角函數的級數展開式。後來,三角函數和對數函數展開式的研究成為中國數學家的重要課題。明安圖(17世紀末至18世紀60年代)、董祐誠(公元1791—1823年)、項名達(公元1789—1850年)、戴煦(公元1805—1860年)等都作出了傑出貢獻。李善蘭(公元1811—1882年)的《方圓闡幽》、《弧矢啟秘》、《對數探源》(公元1845年)在三角函數與對數函數的研究上取得了更大的成就。他創造的尖錐術提出了幾個相當於定積分的公式,在接觸西方微積分思想之前獨立地接近了微積分學。李善蘭,字壬叔,號秋紉,浙江海寧人。幼年即嗜好數學,30餘歲即獲創造性成果。
1840年,列強用大炮轟開了清朝閉關自守的大門,中國逐漸淪為半封建半殖民地社會。西方數學以前所未有的規模大量傳入。1852年李善蘭到上海,與英國傳教士偉烈亞力(公元1815—1887年)合譯《幾何原本》後九卷、《代數學》13卷、《代微積拾級》18卷等許多西方數學著作,後者是中國第一部微積分學譯著。後來,華衡芳(公元1833—1902年)與英人傅蘭雅合譯了《代數術》、《微積溯源》、《三角數理》、《決疑數學》等書,後者是中國第一部概率論譯著。他們創造的許多術語至今還在使用。李善蘭還融會中西,著述頗豐。《橢圓正術解》等四種是關於圓錐曲線的研究,《級數回求》等是關於冪級數的研究,而《垛積比類》則在朱世傑基礎上系統解決了高階等差級數求和問題,並提出了著名的李善蘭恆等式。1872年撰《考數根法》,證明了費爾馬小定理,提出了素數判定法則。他的著作匯集為《則古昔齋算學》,包括14種科學著作。李善蘭是開展現代數學研究的第一位中國數學家。然而,總的說來,時處清末,經濟衰落,社會動盪,有志於現代數學的人沒有與現代工程技術結合的條件,不可能有大量可觀的成果,而士大夫階層更多的人抱有西學為我中華所固有的偏見,不求甚解。此後不久,尤其是維新變法和新文化運動之後,中國古代數學傳統基本中斷,中國數學研究納入了統一的現代數學。20世紀是中國數學復興的世紀,人們期待,在下個世紀中國將重新取得數學大國的地位。

㈣ 中國古代數學發展經歷了什麼樣的歷史進程

數學是中國古代科學中一門重要的學科,它的歷史悠久,成就輝煌。根據它本身發回展的特點,可以答分為五個時期:①中國古代數學的萌芽;②中國古代數學體系的形成;③中國古代數學的發展;④中國古代數學的繁榮;⑤中西方數學的融合。

㈤ 中國古代的數學知識乘法口訣歷史有幾百年了

早在「春秋」的時候,《九九乘法歌訣》就已經開始流行了,至少有2700年歷史了。

㈥ 中國古代數學有哪些成就

最牛的當然是《九章算術》了
劉 徽
劉徽(生於公元250年左右),南北朝時期數學史上一個非常偉大的數學家,在世界數學史上,也佔有傑出的地位.他的傑作《九章算術注》和《海島算經》,是我國最寶貴的數學遺產.

賈 憲
賈憲,中國古代北宋時期傑出的數學家。曾撰寫的《黃帝九章演算法細草》(九卷)和《演算法斆古集》(二卷)(斆xiào,意:數導)均已失傳。

他的主要貢獻是創造了"賈憲三角"和增乘開方法,增乘開方法即求高次冪的正根法。目前中學數學中的混合除法,其原理和程序均與此相仿,增乘開方法比傳統的方法整齊簡捷、又更程序化,所以在開高次方時,尤其顯出它的優越性,這個方法的提出要比歐洲數學家霍納的結論早七百多年。

秦九韶
秦九韶(約1202--1261),字道古,四川安岳人。先後在湖北,安徽,江蘇,浙江等地做官,1261年左右被貶至梅州,(今廣東梅縣),不久死於任所。他與李冶,楊輝,朱世傑並稱宋元數學四大家。早年在杭州「訪習於太史,又嘗從隱君子受數學」,1247年寫成著名的《數書九章》。《數書九章》全書凡18卷,81題,分為九大類。其最重要的數學成就----「大衍總數術」(一次同餘組解法)與「正負開方術"(高次方程數值解法),使這部宋代算經在中世紀世界數學史上佔有突出的地位。

李冶
李冶(1192----1279),原名李治,號敬齋,金代真定欒城人,曾任鈞州(今河南禹縣)知事,1232年鈞州被蒙古軍所破,遂隱居治學,被元世祖忽必烈聘為翰林學士,僅一年,便辭官回鄉。1248年撰成《測圓海鏡》,其主要目的是說明用天元術列方程的方法。「天元術」與現代代數中的列方程法相類似,「立天元一為某某」,相當於「設x為某某「,可以說是符號代數的嘗試。李冶還有另一步數學著作《益古演段》(1259)也是講解天元術的。

朱世傑
朱世傑(1300前後),字漢卿,號松庭,寓居燕山(今北京附近),「以數學名家周遊湖海二十餘年」,「踵門而學者雲集」(莫若、祖頤:《四元玉鑒》後序)。朱世傑數學代表作有《算學啟蒙》(1299)和《四元玉鑒》(1303)。《算術啟蒙》是一部通俗數學名著,曾流傳海外,影響了朝鮮、日本數學的發展。《四元玉鑒》則是中國宋元數學高峰的又一個標志,其中最傑出的數學創造有「四元術」(多元高次方程列式與消元解法)、「垛積術」(高階等差數列求和)與「招差術」(高次內插法).

祖沖之
祖沖之(公元429~500年)祖籍是現今河北省淶源縣,他是南北朝時代的一位傑出科學家。他不僅是一位數學家,同時還通曉天文歷法、機械製造、音樂等領域,並且是一位天文學家。

祖沖之在數學方面的主要成就是關於圓周率的計算,他算出的圓周率為3.1415926<π<3.1415927,這一結果的重要意義在於指出誤差的范圍,是當時世界最傑出的成就。祖沖之確定了兩個形式的π值,約率355/173(≈3.1415926)密率22/7(≈3.14),這兩個數都是π的漸近分數。

祖 暅
祖暅,祖沖之之子,同其父祖沖之一起圓滿解決了球面積的計算問題,得到正確的體積公式。現行教材中著名的「祖暅原理」,在公元五世紀可謂祖暅對世界傑出的貢獻。

楊輝
楊輝,中國南宋時期傑出的數學家和數學教育家。在13世紀中葉活動於蘇杭一帶,其著作甚多。
他著名的數學書共五種二十一卷。著有《詳解九章演算法》十二卷(1261年)、《日用演算法》二卷(1262年)、《乘除通變本末》三卷(1274年)、《田畝比類乘除演算法》二卷(1275年)、《續古摘奇演算法》二卷(1275年)。
他在《續古摘奇演算法》中介紹了各種形式的"縱橫圖"及有關的構造方法,同時"垛積術"是楊輝繼沈括"隙積術"後,關於高階等差級數的研究。楊輝在"纂類"中,將《九章算術》246個題目按解題方法由淺入深的順序,重新分為乘除、分率、合率、互換、二衰分、疊積、盈不足、方程、勾股等九類。

趙 爽
趙爽,三國時期東吳的數學家。曾注《周髀算經》,他所作的《周髀算經注》中有一篇《勾股圓方圖注》全文五百餘字,並附有雲幅插圖(已失傳),這篇注文簡練地總結了東漢時期勾股算術的重要成果,最早給出並證明了有關勾股弦三邊及其和、差關系的二十多個命題,他的證明主要是依據幾何圖形面積的換算關系。

趙爽還在《勾股圓方圖注》中推導出二次方程 (其中a>0,A>0)的求根公式 在《日高圖注》中利用幾何圖形面積關系,給出了"重差術"的證明。(漢代天文學家測量太陽高、遠的方法稱為重差術)。

㈦ 中國十大古代數學家的故事

祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.
祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率, 外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".
祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元.
祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算.他們當時採用的一條原理是:"冪勢既同,則積不容異."意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理, 但這是在祖氏以後一千多年才由卡氏發現的.為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為"祖暅原理".
數學家的故事——蘇步青
蘇步青1902年9月出生在浙江省平陽縣的一個山村裡。雖然家境清貧,可他父母省吃儉用,拚死拼活也要供他上學。他在讀初中時,對數學並不感興趣,覺得數學太簡單,一學就懂。可量,後來的一堂數學課影響了他一生的道路。
那是蘇步青上初三時,他就讀浙江省六十中來了一位剛從東京留學歸來的教數學課的楊老師。第一堂課楊老師沒有講數學,而是講故事。他說:「當今世界,弱肉強食,世界列強依仗船堅炮利,都想蠶食瓜分中國。中華亡國滅種的危險迫在眉睫,振興科學,發展實業,救亡圖存,在此一舉。『天下興亡,匹夫有責』,在座的每一位同學都有責任。」他旁徵博引,講述了數學在現代科學技術發展中的巨大作用。這堂課的最後一句話是:「為了救亡圖存,必須振興科學。數學是科學的開路先鋒,為了發展科學,必須學好數學。」蘇步青一生不知聽過多少堂課,但這一堂課使他終身難忘。
楊老師的課深深地打動了他,給他的思想注入了新的興奮劑。讀書,不僅為了擺脫個人困境,而是要拯救中國廣大的苦難民眾;讀書,不僅是為了個人找出路,而是為中華民族求新生。當天晚上,蘇步青輾轉反側,徹夜難眠。在楊老師的影響下,蘇步青的興趣從文學轉向了數學,並從此立下了「讀書不忘救國,救國不忘讀書」的座右銘。一迷上數學,不管是酷暑隆冬,霜晨雪夜,蘇步青只知道讀書、思考、解題、演算,4年中演算了上萬道數學習題。現在溫州一中(即當時省立十中)還珍藏著蘇步青一本幾何練習薄,用毛筆書寫,工工整整。中學畢業時,蘇步青門門功課都在90分以上。
17歲時,蘇步青赴日留學,並以第一名的成績考取東京高等工業學校,在那裡他如飢似渴地學習著。為國爭光的信念驅使蘇步青較早地進入了數學的研究領域,在完成學業的同時,寫了30多篇論文,在微分幾何方面取得令人矚目的成果,並於1931年獲得理學博士學位。獲得博士之前,蘇步青已在日本帝國大學數學系當講師,正當日本一個大學准備聘他去任待遇優厚的副教授時,蘇步青卻決定回國,回到撫育他成長的祖任教。回到浙大任教授的蘇步青,生活十分艱苦。面對困境,蘇步青的回答是「吃苦算得了什麼,我甘心情願,因為我選擇了一條正確的道路,這是一條愛國的光明之路啊!」 這就是老一輩數學家那顆愛國的赤子之心

㈧ 中國古代數學輝煌史

中國古代數學輝煌史

中國古代數學的萌芽

原始公社末期,私有制和貨物交換產生以後,數與形的概念有了進一步的發展,仰韶文化時期出土的

陶器,上面已刻有表示1234的符號。到原始公社末期,已開始用文字元號取代結繩記事了。

西安半坡出土的陶器有用1~8個圓點組成的等邊三角形和分正方形為100個小正方形的圖案,半坡遺址

的房屋基址都是圓形和方形。為了畫圓作方,確定平直,人們還創造了規、矩、准、繩等作圖與測量工具

。據《史記·夏本紀》記載,夏禹治水時已使用了這些工具。

商代中期,在甲骨文中已產生一套十進制數字和記數法,其中最大的數字為三萬;與此同時,殷人用

十個天乾和十二個地支組成甲子、乙丑、丙寅、丁卯等60個名稱來記60天的日期;在周代,又把以前用陰

、陽符號構成的八卦表示八種事物發展為六十四卦,表示64種事物。

公元前一世紀的《周髀算經》提到西周初期用矩測量高、深、廣、遠的方法,並舉出勾股形的勾三、

股四、弦五以及環矩可以為圓等例子。《禮記·內則》篇提到西周貴族子弟從九歲開始便要學習數目和記

數方法,他們要受禮、樂、射、馭、書、數的訓練,作為「六藝」之一的數已經開始成為專門的課程。

春秋戰國之際,籌算已得到普遍的應用,籌算記數法已使用十進位值制,這種記數法對世界數學的發

展是有劃時代意義的。這個時期的測量數學在生產上有了廣泛應用,在數學上亦有相應的提高。

戰國時期的百家爭鳴也促進了數學的發展,尤其是對於正名和一些命題的爭論直接與數學有關。名家

認為經過抽象以後的名詞概念與它們原來的實體不同,他們提出「矩不方,規不可以為圓」,把「大一」(

無窮大)定義為「至大無外」,「小一」(無窮小)定義為「至小無內」。還提出了「一尺之棰,日取其半,

萬世不竭」等命題。

而墨家則認為名來源於物,名可以從不同方面和不同深度反映物。墨家給出一些數學定義。例如圓、

方、平、直、次(相切)、端(點)等等。

墨家不同意「一尺之棰」的命題,提出一個「非半」的命題來進行反駁:將一線段按一半一半地無限

分割下去,就必將出現一個不能再分割的「非半」,這個「非半」就是點。

名家的命題論述了有限長度可分割成一個無窮序列,墨家的命題則指出了這種無限分割的變化和結果

。名家和墨家的數學定義和數學命題的討論,對中國古代數學理論的發展是很有意義的。

中國古代數學體系的形成

秦漢是封建社會的上升時期,經濟和文化均得到迅速發展。中國古代數學體系正是形成於這個時期,

它的主要標志是算術已成為一個專門的學科,以及以《九章算術》為代表的數學著作的出現。

《九章算術》是戰國、秦、漢封建社會創立並鞏固時期數學發展的總結,就其數學成就來說,堪稱是

世界數學名著。例如分數四則運算、今有術(西方稱三率法)、開平方與開立方(包括二次方程數值解法)、

盈不足術(西方稱雙設法)、各種面積和體積公式、線性方程組解法、正負數運算的加減法則、勾股形解法(

特別是勾股定理和求勾股數的方法)等,水平都是很高的。其中方程組解法和正負數加減法則在世界數學發

展上是遙遙領先的。就其特點來說,它形成了一個以籌算為中心、與古希臘數學完全不同的獨立體系。

《九章算術》有幾個顯著的特點:採用按類分章的數學問題集的形式;算式都是從籌算記數法發展起來

的;以算術、代數為主,很少涉及圖形性質;重視應用,缺乏理論闡述等。

這些特點是同當時社會條件與學術思想密切相關的。秦漢時期,一切科學技術都要為當時確立和鞏固

封建制度,以及發展社會生產服務,強調數學的應用性。最後成書於東漢初年的《九章算術》,排除了戰

國時期在百家爭鳴中出現的名家和墨家重視名詞定義與邏輯的討論,偏重於與當時生產、生活密切相結合

的數學問題及其解法,這與當時社會的發展情況是完全一致的。

《九章算術》在隋唐時期曾傳到朝鮮、日本,並成為這些國家當時的數學教科書。它的一些成就如十

進位值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過印度、阿拉伯傳到歐洲,促進了世界數學的

發展。

中國古代數學的發展

魏、晉時期出現的玄學,不為漢儒經學束縛,思想比較活躍;它詰辯求勝,又能運用邏輯思維,分析

義理,這些都有利於數學從理論上加以提高。吳國趙爽注《周髀算經》,漢末魏初徐岳撰《九章算術》注

,魏末晉初劉徽撰《九章算術》注、《九章重差圖》都是出現在這個時期。趙爽與劉徽的工作為中國古代

數學體系奠定了理論基礎。

趙爽是中國古代對數學定理和公式進行證明與推導的最早的數學家之一。他在《周髀算經》書中補充

的「勾股圓方圖及注」和「日高圖及注」是十分重要的數學文獻。在「勾股圓方圖及注」中他提出用弦圖

證明勾股定理和解勾股形的五個公式;在「日高圖及注」中,他用圖形面積證明漢代普遍應用的重差公式

,趙爽的工作是帶有開創性的,在中國古代數學發展中佔有重要地位。

劉徽約與趙爽同時,他繼承和發展了戰國時期名家和墨家的思想,主張對一些數學名詞特別是重要的

數學概念給以嚴格的定義,認為對數學知識必須進行「析理」,才能使數學著作簡明嚴密,利於讀者。他

的《九章算術》注不僅是對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且在論述的過程

中有很大的發展。劉徽創造割圓術,利用極限的思想證明圓的面積公式,並首次用理論的方法算得圓周率

為 157/50和 3927/1250。

劉徽用無窮分割的方法證明了直角方錐與直角四面體的體積比恆為2:1,解決了一般立體體積的關鍵問

題。在證明方錐、圓柱、圓錐、圓台的體積時,劉徽為徹底解決球的體積提出了正確途徑。

東晉以後,中國長期處於戰爭和南北分裂的狀態。祖沖之父子的工作就是經濟文化南移以後,南方數

學發展的具有代表性的工作,他們在劉徽注《九章算術》的基礎上,把傳統數學大大向前推進了一步。他

們的數學工作主要有:計算出圓周率在3.1415926~3.1415927之間;提出祖(日恆)原理;提出二次與三次

方程的解法等。

據推測,祖沖之在劉徽割圓術的基礎上,算出圓內接正6144邊形和正12288邊形的面積,從而得到了這

個結果。他又用新的方法得到圓周率兩個分數值,即約率22/7和密率355/113。祖沖之這一工作,使中國在

圓周率計算方面,比西方領先約一千年之久;

祖沖之之子祖(日恆)總結了劉徽的有關工作,提出「冪勢既同則積不容異」,即等高的兩立體,若其

任意高處的水平截面積相等,則這兩立體體積相等,這就是著名的祖(日恆)公理。祖(日恆)應用這個公理

,解決了劉徽尚未解決的球體積公式。

隋煬帝好大喜功,大興土木,客觀上促進了數學的發展。唐初王孝通的《緝古算經》,主要討論土木

工程中計算土方、工程分工、驗收以及倉庫和地窖的計算問題,反映了這個時期數學的情況。王孝通在不

用數學符號的情況下,立出數字三次方程,不僅解決了當時社會的需要,也為後來天元術的建立打下基礎

。此外,對傳統的勾股形解法,王孝通也是用數字三次方程解決的。

唐初封建統治者繼承隋制,656年在國子監設立算學館,設有算學博士和助教,學生30人。由太史令李

淳風等編纂注釋《算經十書》,作為算學館學生用的課本,明算科考試亦以這些算書為准。李淳風等編纂

的《算經十書》,對保存數學經典著作、為數學研究提供文獻資料方面是很有意義的。他們給《周髀算經

》、《九章算術》以及《海島算經》所作的註解,對讀者是有幫助的。隋唐時期,由於歷法的需要,天算

學家創立了二次函數的內插法,豐富了中國古代數學的內容。

算籌是中國古代的主要計算工具,它具有簡單、形象、具體等優點,但也存在布籌佔用面積大,運籌

速度加快時容易擺弄不正而造成錯誤等缺點,因此很早就開始進行改革。其中太乙算、兩儀算、三才算和

珠算都是用珠的槽算盤,在技術上是重要的改革。尤其是「珠算」,它繼承了籌算五升十進與位值制的優

點,又克服了籌算縱橫記數與置籌不便的缺點,優越性十分明顯。但由於當時乘除演算法仍然不能在一個橫

列中進行。算珠還沒有穿檔,攜帶不方便,因此仍沒有普遍應用。

唐中期以後,商業繁榮,數字計算增多,迫切要求改革計算方法,從《新唐書》等文獻留下來的算書

書目,可以看出這次演算法改革主要是簡化乘、除演算法,唐代的演算法改革使乘除法可以在一個橫列中進行運

算,它既適用於籌算,也適用於珠算。

中國古代數學的繁榮

960年,北宋王朝的建立結束了五代十國割據的局面。北宋的農業、手工業、商業空前繁榮,科學技術

突飛猛進,火葯、指南針、印刷術三大發明就是在這種經濟高漲的情況下得到廣泛應用。1084年秘書省第

一次印刷出版了《算經十書》,1213年鮑擀之又進行翻刻。這些都為數學發展創造了良好的條件。

從11~14世紀約300年期間,出現了一批著名的數學家和數學著作,如賈憲的《黃帝九章演算法細草》,

劉益的《議古根源》,秦九韶的《數書九章》,李冶的《測圓海鏡》和《益古演段》,楊輝的《詳解九章

演算法》《日用演算法》和《楊輝演算法》,朱世傑的《算學啟蒙》《四元玉鑒》等,很多領域都達到古代數學

的高峰,其中一些成就也是當時世界數學的高峰。

從開平方、開立方到四次以上的開方,在認識上是一個飛躍,實現這個飛躍的就是賈憲。楊輝在《九

章演算法纂類》中載有賈憲「增乘開平方法」、「增乘開立方法」;在《詳解九章演算法》中載有賈憲的「開

方作法本源」圖、「增乘方法求廉草」和用增乘開方法開四次方的例子。根據這些記錄可以確定賈憲已發

現二項系數表,創造了增乘開方法。這兩項成就對整個宋元數學發生重大的影響,其中賈憲三角比西方的

帕斯卡三角形早提出600多年。

把增乘開方法推廣到數字高次方程(包括系數為負的情形)解法的是劉益。《楊輝演算法》中「田畝比類

乘除捷法」卷,介紹了原書中22個二次方程和 1個四次方程,後者是用增乘開方法解三次以上的高次方程

的最早例子。

秦九韶是高次方程解法的集大成者,他在《數書九章》中收集了21個用增乘開方法解高次方程(最高次

數為10)的問題。為了適應增乘開方法的計算程序,奏九韶把常數項規定為負數,把高次方程解法分成各種

類型。當方程的根為非整數時,秦九韶採取繼續求根的小數,或用減根變換方程各次冪的系數之和為分母

,常數為分子來表示根的非整數部分,這是《九章算術》和劉徽注處理無理數方法的發展。在求根的第二

位數時,秦九韶還提出以一次項系數除常數項為根的第二位數的試除法,這比西方最早的霍納方法早500多

年。

元代天文學家王恂、郭守敬等在《授時歷》中解決了三次函數的內插值問題。秦九韶在「綴術推星」

題、朱世傑在《四元玉鑒》「如象招數」題都提到內插法(他們稱為招差術),朱世傑得到一個四次函數的

內插公式。

用天元(相當於x)作為未知數符號,立出高次方程,古代稱為天元術,這是中國數學史上首次引入符號

,並用符號運算來解決建立高次方程的問題。現存最早的天元術著作是李冶的《測圓海鏡》。

從天元術推廣到二元、三元和四元的高次聯立方程組,是宋元數學家的又一項傑出的創造。留傳至今

,並對這一傑出創造進行系統論述的是朱世傑的《四元玉鑒》。

朱世傑的四元高次聯立方程組表示法是在天元術的基礎上發展起來的,他把常數放在中央,四元的各

次冪放在上、下、左、右四個方向上,其他各項放在四個象限中。朱世傑的最大貢獻是提出四元消元法,

其方法是先擇一元為未知數,其他元組成的多項式作為這未知數的系數,列成若干個一元高次方程式,然

後應用互乘相消法逐步消去這一未知數。重復這一步驟便可消去其他未知數,最後用增乘開方法求解。這

是線性方法組解法的重大發展,比西方同類方法早400多年。

勾股形解法在宋元時期有新的發展,朱世傑在《算學啟蒙》卷下提出已知勾弦和、股弦和求解勾股形

的方法,補充了《九章算術》的不足。李冶在《測圓海鏡》對勾股容圓問題進行了詳細的研究,得到九個

容圓公式,大大豐富了中國古代幾何學的內容。

已知黃道與赤道的夾角和太陽從冬至點向春分點運行的黃經余弧,求赤經余弧和赤緯度數,是一個解

球面直角三角形的問題,傳統歷法都是用內插法進行計算。元代王恂、郭守敬等則用傳統的勾股形解法、

沈括用會圓術和天元術解決了這個問題。不過他們得到的是一個近似公式,結果不夠精確。但他們的整個

推算步驟是正確無誤的,從數學意義上講,這個方法開辟了通往球面三角法的途徑。

中國古代計算技術改革的高潮也是出現在宋元時期。宋元明的歷史文獻中載有大量這個時期的實用算

術書目,其數量遠比唐代為多,改革的主要內容仍是乘除法。與演算法改革的同時,穿珠算盤在北宋可能已

出現。但如果把現代珠算看成是既有穿珠算盤,又有一套完善的演算法和口訣,那麼應該說它最後完成於元

代。

宋元數學的繁榮,是社會經濟發展和科學技術發展的必然結果,是傳統數學發展的必然結果。此外,

數學家們的科學思想與數學思想也是十分重要的。宋元數學家都在不同程度上反對理學家的象數神秘主義

。秦九韶雖曾主張數學與道學同出一源,但他後來認識到,「通神明」的數學是不存在的,只有「經世務

類萬物」的數學;莫若在《四元玉鑒》序文中提出的「用假象真,以虛問實」則代表了高度抽象思維的思

想方法;楊輝對縱橫圖結構進行研究,揭示出洛書的本質,有力地批判了象數神秘主義。所有這些,無疑

是促進數學發展的重要因素。

中西方數學的融合

中國從明代開始進入了封建社會的晚期,封建統治者實行極權統治,宣傳唯心主義哲學,施行八股考

試制度。在這種情況下,除珠算外,數學發展逐漸衰落。

16世紀末以後,西方初等數學陸續傳入中國,使中國數學研究出現一個中西融合貫通的局面;鴉片戰

爭以後,近代數學開始傳入中國,中國數學便轉入一個以學習西方數學為主的時期;到19世紀末20世紀初

,近代數學研究才真正開始。

從明初到明中葉,商品經濟有所發展,和這種商業發展相適應的是珠算的普及。明初《魁本對相四言

雜字》和《魯班木經》的出現,說明珠算已十分流行。前者是兒童看圖識字的課本,後者把算盤作為家庭

必需用品列入一般的木器傢具手冊中。

隨著珠算的普及,珠算演算法和口訣也逐漸趨於完善。例如王文素和程大位增加並改善撞歸、起一口訣

;徐心魯和程大位增添加、減口訣並在除法中廣泛應用歸除,從而實現了珠算四則運算的全部口訣化;朱

載墒和程大位把籌算開平方和開立方的方法應用到珠算,程大位用珠算解數字二次、三次方程等等。程大

位的著作在國內外流傳很廣,影響很大。

1582年,義大利傳教士利瑪竇到中國,1607年以後,他先後與徐光啟翻譯了《幾何原本》前六卷、《

測量法義》一卷,與李之藻編譯《圜容較義》和《同文算指》。1629年,徐光啟被禮部任命督修歷法,在

他主持下,編譯《崇禎歷書》137卷。《崇禎歷書》主要是介紹歐洲天文學家第谷的地心學說。作為這一學

說的數學基礎,希臘的幾何學,歐洲玉山若乾的三角學,以及納皮爾算籌、伽利略比例規等計算工具也同

時介紹進來。

在傳入的數學中,影響最大的是《幾何原本》。《幾何原本》是中國第一部數學翻譯著作,絕大部分

數學名詞都是首創,其中許多至今仍在沿用。徐光啟認為對它「不必疑」、「不必改」,「舉世無一人不

當學」。《幾何原本》是明清兩代數學家必讀的數學書,對他們的研究工作頗有影響。

其次應用最廣的是三角學,介紹西方三角學的著作有《大測》《割圓八線表》和《測量全義》。《大

測》主要說明三角八線(正弦、餘弦、正切、餘切、正割、餘割、正矢、余矢)的性質,造表方法和用表方

法。《測量全義》除增加一些《大測》所缺的平面三角外,比較重要的是積化和差公式和球面三角。所有

這些,在當時歷法工作中都是隨譯隨用的。

1646年,波蘭傳教士穆尼閣來華,跟隨他學習西方科學的有薛鳳柞、方中通等。穆尼閣去世後,薛鳳

柞據其所學,編成《歷學會通》,想把中法西法融會貫通起來。《歷學會通》中的數學內容主要有比例對

數表》《比例四線新表》和《三角演算法》。前兩書是介紹英國數學家納皮爾和布里格斯發明增修的對數。

後一書除《崇禎歷書》介紹的球面三角外,尚有半形公式、半弧公式、德氏比例式、納氏比例式等。方中

通所著《數度衍》對對數理論進行解釋。對數的傳入是十分重要,它在歷法計算中立即就得到應用。

清初學者研究中西數學有心得而著書傳世的很多,影響較大的有王錫闡《圖解》、梅文鼎《梅氏叢書

輯要》(其中數學著作13種共40卷)、年希堯《視學》等。梅文鼎是集中西數學之大成者。他對傳統數學中

的線性方程組解法、勾股形解法和高次冪求正根方法等方面進行整理和研究,使瀕於枯萎的明代數學出現

了生機。年希堯的《視學》是中國第一部介紹西方****學的著作。

清康熙皇帝十分重視西方科學,他除了親自學習天文數學外,還培養了一些人才和翻譯了一些著作。

1712年康熙皇帝命梅彀成任蒙養齋匯編官,會同陳厚耀、何國宗、明安圖、楊道聲等編纂天文演算法書。

1721年完成《律歷淵源》100卷,以康熙「御定」的名義於1723年出版。其中《數理精蘊》主要由梅彀成負

責,分上下兩編,上編包括《幾何原本》、《演算法原本》,均譯自法文著作;下編包括算術、代數、平面

幾何平面三角、立體幾何等初等數學,附有素數表、對數表和三角函數表。由於它是一部比較全面的初等

數學網路全書,並有康熙「御定」的名義,因此對當時數學研究有一定影響。

綜上述可以看到,清代數學家對西方數學做了大量的會通工作,並取得許多獨創性的成果。這些成果

,如和傳統數學比較,是有進步的,但和同時代的西方比較則明顯落後了。

雍正即位以後,對外閉關自守,導致西方科學停止輸入中國,對內實行高壓政策,致使一般學者既不

能接觸西方數學,又不敢過問經世致用之學,因而埋頭於究治古籍。乾嘉年間逐漸形成一個以考據學為主

的乾嘉學派。

隨著《算經十書》與宋元數學著作的收集與注釋,出現了一個研究傳統數學的高潮。其中能突破舊有

框框並有發明創造的有焦循、汪萊、李銳、李善蘭等。他們的工作,和宋元時代的代數學比較是青出於藍

而勝於藍的;和西方代數學比較,在時間上晚了一些,但這些成果是在沒有受到西方近代數學的影響下獨

立得到的。

與傳統數學研究出現高潮的同時,阮元與李銳等編寫了一部天文數學家傳記—《疇人傳》,收集了從

黃帝時期到嘉慶四年已故的天文學家和數學家270餘人(其中有數學著作傳世的不足50人),和明末以來介紹

西方天文數學的傳教士41人。這部著作全由「掇拾史書,荃萃群籍,甄而錄之」而成,收集的完全是第一

手的原始資料,在學術界頗有影響。

1840年鴉片戰爭以後,西方近代數學開始傳入中國。首先是英人在上海設立墨海書館,介紹西方數學

。第二次鴉片戰爭後,曾國藩、李鴻章等官僚集團開展「洋務運動」,也主張介紹和學習西方數學,組織

翻譯了一批近代數學著作。

其中較重要的有李善蘭與偉烈亞力翻譯的《代數學》《代微積拾級》;華蘅芳與英人傅蘭雅合譯的《

代數術》《微積溯源》《決疑數學》;鄒立文與狄考文編譯的《形學備旨》《代數備旨》《筆算數學》;

謝洪賚與潘慎文合譯的《代形合參》《八線備旨》等等。

《代微積拾級》是中國第一部微積分學譯本;《代數學》是英國數學家德·摩根所著的符號代數學譯

本;《決疑數學》是第一部概率論譯本。在這些譯著中,創造了許多數學名詞和術語,至今還在應用,但

所用數學符號一般已被淘汰了。戊戌變法以後,各地興辦新法學校,上述一些著作便成為主要教科書。

在翻譯西方數學著作的同時,中國學者也進行一些研究,寫出一些著作,較重要的有李善蘭的《《尖

錐變法解》《考數根法》;夏彎翔的《洞方術圖解》《致曲術》《致曲圖解》等等,都是會通中西學術思

想的研究成果。

由於輸入的近代數學需要一個消化吸收的過程,加上清末統治者十分腐敗,在太平天國運動的沖擊下

,在帝國主義列強的掠奪下,焦頭爛額,無暇顧及數學研究。直到1919年五四運動以後,中國近代數學的

研究才真正開始。

㈨ 中國從古至今有哪著名些數學家,及其故事

1、祖沖之:字文遠,出生於建康(今南京),祖籍范陽郡遒縣(今河北淶水縣),中國南北朝時期傑出的數學家、天文學家。

故事:祖沖之為求得圓周率的精準數值,就需要對九位有效數字的小數進行加、減、乘、除和開方運算等十多個步驟的計算,而每個步驟都要反復進行十幾次,開方運算有 50 次,最後計算出的數字達到小數點後十六、七位。

2、劉徽:漢族,山東濱州鄒平市人,魏晉期間偉大的數學家,中國古典數學理論的奠基人之一。是中國數學史上一個非常偉大的數學家,他的傑作《九章算術注》和《海島算經》,是中國最寶貴的數學遺產。

故事:他用割圓術,從直徑為2尺的圓內接正六邊形開始割圓,依次得正12邊形、正24邊形,割得越細,正多邊形面積和圓面積之差越小,他計算了3072邊形面積並驗證了這個值。劉徽提出的計算圓周率的科學方法,奠定了此後千餘年來中國圓周率計算在世界上的領先地位。

3、蘇步青:浙江溫州平陽人,祖籍福建省泉州市,中國科學院院士,中國著名的數學家、教育家,中國微分幾何學派創始人,被譽為「東方國度上燦爛的數學明星」、「東方第一幾何學家」、「數學之王」。

故事:蘇步青和陳建功看到了數學各分支之間聯系的必要,貫徹因材施教的原則,決定讓兩名成績突出的學生谷超豪和張鳴鏞同時參加「微分幾何」和「函數論」兩個討論班,這在當時也是一個創舉

4、華羅庚:中國解析數論、矩陣幾何學、典型群、自守函數論與多元復變函數論等多方面研究的創始人和開拓者,並被列為芝加哥科學技術博物館中當今世界88位數學偉人之一。國際上以華氏命名的數學科研成果有「華氏定理」、「華氏不等式」、「華—王方法」等。

故事:華羅庚在清華執教期間,為了照顧年邁多病的公公,吳筱元留在家鄉,挑起家務擔子。在以後的日子裡,她不僅操持家務,還幫他抄寫論文和書信,接待客人。幾十年來,吳筱元在華羅庚的生活和事業上,起著重要的作用。

5、陳景潤:男,漢族,無黨派人士,福建福州人,當代數學家。1973年發表了(1+2)的詳細證明,被公認為是對哥德巴赫猜想研究的重大貢獻。

故事:他有著超人的勤奮和頑強的毅力,多年來孜孜不倦地致力於數學研究,廢寢忘食,每天工作12個小時以上。在遭受疾病折磨時,他都沒有停止過自己的追求,為數學事業的發展作出了重大貢獻。

㈩ 中國古代數學

國古代數學,和天文學以及其他許多科學技術一樣,也取得了極其輝煌的成就。可以毫不誇張地說,直到明代中葉以前,在數學的許多分支領域里,中國一直處於遙遙領先的地位。中國古代的許多數學家曾經寫下了不少著名的數學著作。許多具有世界意義的成就正是因為有了這些古算書而得以流傳下來。這些中國古代數學名著是了解古代數學成就的豐富寶庫。

例如現在所知道的最早的數學著作《周髀算經》和《九章算術》,它們都是公元紀元前後的作品,到現在已有兩千年左右的歷史了。能夠使兩千年前的數學書籍流傳到現在,這本身就是一項了不起的成就。

開始,人們是用抄寫的方法進行學習並且把數學知識傳給下一代的。直到北宋,隨著印刷術的發展,開始出現印刷本的數學書籍,這恐怕是世界上印刷本數學著作的最早出現。現在收藏於北京圖書館、上海圖書館、北京大學圖書館的傳世南宋本《周髀算經》、《九章算術》等五種數學書籍,更是值得珍重的寶貴文物。

從漢唐時期到宋元時期,歷代都有著名算書出現:或是用中國傳統的方法給已有的算書作註解,在註解過程中提出自己新的演算法;或是另寫新書,創新說,立新意。在這些流傳下來的古算書中凝聚著歷代數學家的勞動成果,它們是歷代數學家共同留下來的寶貴遺產。

《算經十書》

《算經十書》是指漢、唐一千多年間的十部著名數學著作,它們曾經是隋唐時候國子監算學科(國家所設學校的數學科)的教科書。十部算書的名字是:《周髀算經》、《九章算術》、《海島算經》、《五曹算經》、《孫子算經》、《夏侯陽算經》、《張丘建算經》、《五經算術》、《緝古算經》、《綴術》。

這十部算書,以《周髀算經》為最早,不知道它的作者是誰,據考證,它成書的年代當不晚於西漢後期(公元前一世紀)。《周髀算經》不僅是數學著作,更確切地說,它是講述當時的一派天文學學說——「蓋天說」的天文著作。就其中的數學內容來說,書中記載了用勾股定理來進行的天文計算,還有比較復雜的分數計算。當然不能說這兩項演算法都是到公元前一世紀才為人們所掌握,它僅僅說明在現在已經知道的資料中,《周髀算經》是比較早的記載。

對古代數學的各個方面全面完整地進行敘述的是《九章算術》,它是十部算書中最重要的一部。它對以後中國古代數學發展所產生的影響,正像古希臘歐幾里得(約前330—前275)《幾何原本》對西方數學所產生的影響一樣,是非常深刻的。在中國,它在一千幾百年間被直接用作數學教育的教科書。它還影響到國外,朝鮮和日本也都曾拿它當作教科書。

《九章算術》,也不知道確實的作者是誰,只知道西漢早期的著名數學家張蒼(前201—前152)、耿壽昌等人都曾經對它進行過增訂刪補。《漢書?藝文志》中沒有《九章算術》的書名,但是有許商、杜忠二人所著的《算術》,因此有人推斷其中或者也含有許、杜二人的工作。1984年,湖北江陵張家山西漢早期古墓出土《算數書》書簡,67 推算成書當比《九章算術》早一個半世紀以上,內容和《九章算術》極相類似,有些算題和《九章算術》算題文句也基本相同,可見兩書有某些繼承關系。可以說《九章算術》是在長時期里經過多次修改逐漸形成的,雖然其中的某些演算法可能早在西漢之前就已經有了。正如書名所反映的,全書共分九章,一共搜集了二百四十六個數學問題,連同每個問題的解法,分為九大類,每類算是一章。

從數學成就上看,首先應該提到的是:書中記載了當時世界上最先進的分數四則運算和比例演算法。書中還記載有解決各種面積和體積問題的演算法以及利用勾股定理進行測量的各種問題。《九章算術》中最重要的成就是在代數方面,書中記載了開平方和開立方的方法,並且在這基礎上有了求解一般一元二次方程(首項系數不是負)的數值解法。還有整整一章是講述聯立一次方程解法的,這種解法實質上和現在中學里所講的方法是一致的。這要比歐洲同類演算法早出一千五百多年。在同一章中,還在世界數學史上第一次記載了負數概念和正負數的加減法運演算法則。

《九章算術》不僅在中國數學史上佔有重要地位,它的影響還遠及國外。在歐洲中世紀,《九章算術》中的某些演算法,例如分數和比例,就有可能先傳入印度再經阿拉伯傳入歐洲。再如「盈不足」 (也可以算是一種一次內插法),在阿拉伯和歐洲早期的數學著作中,就被稱作「中國演算法」。現在,作為一部世界科學名著,《九章算術》已經被譯成許多種文字出版。

《算經十書》中的第三部是《海島算經》,它是三國時期劉徽(約225—約295)所作。這部書中講述的都是利用標桿進行兩次、三次、最復雜的是四次測量來解決各種測量數學的問題。這些測量數學,正是中國古代非常先進的地圖學的數學基礎。此外,劉徽對《九章算術》所作的注釋工作也是很有名的。一般地說,可以把這些注釋看成是《九章算術》中若干演算法的數學證明。劉徽注中的「割圓術」開創了中國古代圓周率計算方面的重要方法(參見本書第98頁),他還首次把極限概念應用於解決數學問題。

《算經十書》的其餘幾部書也記載有一些具有世界意義的成就。例如《孫子算經》中的「物不知數」問題(一次同餘式解法,參見本書第106頁),《張丘建算經》中的「百雞問題」(不定方程問題)等等都比較著名。而《緝古算經》中的三次方程解法,特別是其中所講述的用幾何方法列三次方程的方法,也是很具特色的。

《綴術》是南北朝時期著名數學家祖沖之的著作。很可惜,這部書在唐宋之際公元十世紀前後失傳了。宋人刊刻《算經十書》的時候就用當時找到的另一部算書《數術記遺》來充數。祖沖之的著名工作——關於圓周率的計算(精確到第六位小數),記載在《隋書?律歷志》中(參見本書第101頁)。

《算經十書》中用過的數學名詞,如分子、分母、開平方、開立方、正、負、方程等等,都一直沿用到今天,有的已有近兩千年的歷史了。

宋元算書

中國古代數學,經過從漢到唐一千多年間的發展,已經形成了更加完備的體系。在這基礎上,到了宋元時期(公元十世紀到十四世紀)又有了新的發展。宋元數學,從它的發展速度之快、數學著作出現之多和取得成就之高來看,都可以說是中國古代數學史上最光輝的一頁。

特別是公元十三世紀下半葉,在短短幾十年的時間里,出現了秦九韶(1202—1261)、李冶(1192—1279)、楊輝、朱世傑四位著名的數學家。所謂宋元算書就指的是一直流傳到現在的這四大家的數學著作,包括:

秦九韶著的《數書九章》(公元1247年);

李冶的《測圓海鏡》(公元1248年)和《益古演段》(公元1259年);

楊輝的《詳解九章演算法》(公元1261年)、《日用演算法》(公元1262年)、《楊輝演算法》(公元1274—1275年);

朱世傑的《算學啟蒙》(公元1299年)和《四元玉鑒》(公元1303年)。

《數書九章》主要講述了兩項重要成就:高次方程數值解法和一次同餘式解法(分別參見本書第119頁和第110頁)。書中有的問題要求解十次方程,有的問題答案竟有一百八十條之多。《測圓海鏡》和《益古演段》講述了宋元數學的另一項成就:天元術(用代數方法列方程,參見本書第121頁);也還講述了直角三角形和內接圓所造成的各線段間的關系,這是中國古代數學中別具一格的幾何學。楊輝的著作講述了宋元數學的另一個重要側面:實用數學和各種簡捷演算法。這是應當時社會經濟發展而興起的一個新的方向,並且為珠算盤的產生創造了條件。朱世傑的《算學啟蒙》不愧是當時的一部啟蒙教科書,由淺入深,循序漸進,直到當時數學比較高深的內容。《四元玉鑒》記載了宋元數學的另兩項成就:四元術(求解高次方程組問題,參見本書第123頁)和高階等差級數、高次招差法(參見本書第131頁)。

宋元算書中的這些成就,和西方同類成果相比:高次方程數值解法比霍納(1786—1837)方法早出五百多年,四元術要比貝佐(1730—1783)①早出四百多年,高次招差法比牛頓(1642—1727)等人早出近四百年。

宋元算書中所記載的輝煌成就再次證明:直到明代中葉之前,中國科學技術的許多方面,是處在遙遙領先地位的。

宋元以後,明清時期也有很多算書。例如明代就有著名的算書《演算法統宗》。這是一部風行一時的講珠算盤的書。入清之後,雖然也有不少算書

熱點內容
幼師專業怎麼樣 發布:2021-03-16 21:42:13 瀏覽:24
音樂小毛驢故事 發布:2021-03-16 21:40:57 瀏覽:196
昂立中學生教育閘北 發布:2021-03-16 21:40:47 瀏覽:568
建築業一建報考條件 發布:2021-03-16 21:39:53 瀏覽:666
2017年教師資格注冊結果 發布:2021-03-16 21:39:49 瀏覽:642
中國教師資格證查分 發布:2021-03-16 21:39:41 瀏覽:133
踵什麼成語有哪些 發布:2021-03-16 21:38:20 瀏覽:962
東營幼師專業學校 發布:2021-03-16 21:35:26 瀏覽:467
機械電子研究生課程 發布:2021-03-16 21:33:36 瀏覽:875
杭州朝日教育培訓中心怎麼樣 發布:2021-03-16 21:33:28 瀏覽:238