當前位置:首頁 » 童話故事 » 數學歷史小故事100字左右

數學歷史小故事100字左右

發布時間: 2020-12-31 21:46:32

『壹』 十個數學家的小故事

說一個重量級的人物,他叫做馮·諾依曼,曾經參加過原子彈的製造,構築了現代計算機的架構,進行了第一次可靠的現代數值氣象預報。他也是二十世紀最傑出的數學家之一,他記憶力超群,可以一字不差地張口引用15年前度過的《大英網路全書》或《雙城記》,同時他的心算能力也很厲害,下面我們通過幾個故事來更進一步地了解他。

但這樣有趣並且對世界有重要貢獻的人,卻英年早逝,與1957年在美國去世,享年54歲。我們如今在使用計算機,看天氣預報時,一定要記得背後是這些數學家和科學家的貢獻,他們讓世界更美好。

『貳』 數學家的小故事100字

蒲豐試驗

一天,法國數學家蒲豐請許多朋友到家裡,做了一次試驗.蒲豐在桌子上鋪好一張大白紙,白紙上畫滿了等距離的平行線,他又拿出很多等長的小針,小針的長度都是平行線的一半.蒲豐說:「請大家把這些小針往這張白紙上隨便仍吧!」客人們按他說的做了。
蒲豐的統計結果是:大家共擲2212次,其中小針與紙上平行線相交704次,2210÷704≈3.142。蒲豐說:「這個數是π的近似值。每次都會得到圓周率的近似值,而且投擲的次數越多,求出的圓周率近似值越精確。」這就是著名的「蒲豐試驗」。

數學魔術家

1981年的一個夏日,在印度舉行了一場心算比賽。表演者是印度的一位37歲的婦女,她的名字叫沙貢塔娜。當天,她要以驚人的心算能力,與一台先進的電子計算機展開競賽。
工作人員寫出一個201位的大數,讓求這個數的23次方根。運算結果,沙貢塔娜只用了50秒鍾就向觀眾報出了正確的答案。而計算機為了得出同樣的答數,必須輸入兩萬條指令,再進行計算,花費的時間比沙貢塔娜要多得多。
這一奇聞,在國際上引起了轟動,沙貢塔娜被稱為「數學魔術家」。

工作到最後一天的華羅庚

華羅庚出生於江蘇省,從小喜歡數學,而且非常聰明。1930年,19歲的華羅庚到清華大學讀書。華羅庚在清華四年中,在熊慶來教授的指導下,刻苦學習,一連發表了十幾篇論文,後來又被派到英國留學,獲得博士學位。他對數論有很深的研究,得出了著名的華氏定理。他特別注意理論聯系實際,走遍了20多個省、市、自治區,動員群眾把優選法用於農業生產。
記者在一次采訪時問他:「你最大的願望是什麼?」
他不加思索地回答:「工作到最後一天。」他的確為科學辛勞工作的最後一天,實現了自己的諾言。

21世紀七大數學難題

美國的克雷數學研究所於2000年5月24日在巴黎宣布了眾多數學家評選的結果:對七個「千禧年數學難題」的每一個懸賞一百萬美元。
「千年大獎問題」公布以來,在世界數學界產生了強烈反響。這些問題都是關於數學基本理論的,但這些問題的解決將對數學理論的發展和應用的深化產生巨大推動。認識和研究「千年大獎問題」已成為世界數學界的熱點。不少國家的數學家正在組織聯合攻關。可以預期,「千年大獎問題」將會改變新世紀數學發展的歷史進程。

卡兒,(1596-1650)法國哲學家,數學家,物理學家,解析幾何學奠基人之一。他認為數學是其他一切科學的理論和模型,提出了數學為基礎,以演繹為核心的方法論,對後世的哲學。數學和自然科Х⒄蠱鸕攪司藪蟮淖饔謾?

笛卡兒分析了幾何學和代數學的優缺點,表示要尋求一種包含這兩門科學的優點而沒有它們的缺點的方法,這種方法就是用代數方法,來研究幾何問題--解析幾何,《幾何學》確定了笛卡兒在數學史上的地位,《幾何學》提出了解析幾何學的主要思想和方法,標志著解析幾何學的誕生,思格斯把它稱為數學的轉折點,以後人類進入變數數學階段。

笛卡兒還改進了韋達的符號記法,他用a、b、c……等表示已知數,用x、y、z……等表示未知數,創造了「=」,「」等符號,延用至今。

笛卡兒在物理學,生理學和天文學方面也有許多獨到之處。

韋 達

韋達(1540-1603),法國數學家。年青時學習法律當過律師,後從事政治活動,當過議會議員,在西班牙的戰爭中曾為政府破譯敵軍密碼。韋達還致力於數學研究,第一個有意識地和系統地使用字母來表示 已知數、未知數及其乘冪,帶來了代數理論研究的重大進步。韋達討論了方程根的多種有理變換,發現了方程根與分數的關系,韋達在歐洲被尊稱為「代數學之父」。1579年,韋達出版《應用於三角形的數學定律》,同時還發現,這是π的第一個分析表達式。

主要著有《分析法入門》、《論方程的識別與修正》、《分析五章》、《應用於三角形的數學定律》等,由於他貢獻卓著,成為十六世紀法國最傑出的數學家。

高斯
印象中曾聽過一個故事:高斯是位小學二年級的學生,有一天他的數學老師因為事情已處理了一大半,雖然上課了,仍希望將其完成,因此打算出一題數學題目給學生練習,他的題目是:1+2+3+4+5+6+7+8+9+10=?,因為加法剛教不久,所以老師覺得出了這題,學生肯定是要算蠻久的,才有可能算出來,也就可以藉此利用這段時間來處理未完的事情,但是才一轉眼的時間,高斯已停下了筆,閑閑地坐在那裡,老師看到了很生氣的訓斥高斯,但是高斯卻說他已經將答案算出來了,就是55,老師聽了下了一跳,就問高斯如何算出來的,高斯答道,我只是發現1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和還是11,又11+11+11+11+11=55,我就是這么算的。高斯長大後,成為一位很偉大的數學家。 高斯小的時候能將難題變成簡易,當然資質是很大的因素,但是他懂得觀察,尋求規則,化難為簡,卻是值得我們學習與效法的。

數學家華羅庚小時候的軼事
華羅庚(1910——1982)出生於江蘇太湖畔的金壇縣,因出生時被父親華老祥放於籮筐以圖吉利,「進籮避邪,同庚百歲「,故取名羅庚。
華羅庚從小便貪玩,也喜歡湊熱鬧,只是功課平平,有時還不及格。勉強上完小學,進了家鄉的金壇中學,但仍貪玩,字又寫得歪歪扭扭,做數學作業時倒時滿認真地畫來畫去,但像塗鴉一般,所以上初中時的華羅庚仍不被老師喜歡的學生而且還常常挨戒尺。
金壇中學的一位名叫王維克的教員卻獨有慧眼,他研究了華羅庚塗鴉的本子才發現這許多塗改的地方正反映他解題時探索的多種路子。一次王維克老師給學生講[孫子算經]出了這樣一道題:」今有物不知其數,三三數之剩其二,五五數剩其三,七七數剩其二,問物幾何?「正在大家沉默之際,有個學生站起來,大家一看,原來是向來為人瞧不起的華羅庚,當時他才十四歲,你猜一猜華羅庚他說出是多少?

16世紀德國數學家魯道夫,花了畢生精力,把圓周率算到小數後35位,後人稱之為魯 道夫數,他死後別人便把這個數刻到他的墓碑上。 瑞士數學家雅谷·伯努利,生前對螺線(被譽為生命之線)有研究,他死之後,墓碑上 就刻著一條對數螺線,同時碑文上還寫著:「我雖然改變了,但卻和原來一樣」。這是一句既刻劃螺線性質又象徵他對數學熱愛的雙關語

『叄』 歷史上有哪些有趣的有關數學的故事

歷史上比較有趣的有關數學的故事是《曹沖稱象》這個故事。小學時候聽到這個故事之後就覺得非常有趣。在所有人都無法完成稱象這個任務時,年紀輕輕的曹沖就能想出這么一個非常機智的辦法,讓我覺得非常有趣。

『肆』 關於數學歷史發展和數學小故事的書

下面就是一個小故事,是一個數字之間的故事。
有一天,數字卡片在一起吃午飯的時候,最小的一位說起話來了。
0弟弟說:「我們大傢伙兒,一起拍幾張合影吧,你們覺得怎麼樣?」
0的兄弟姐妹們一口齊聲的說:「好啊。」
8哥哥說:「0弟弟的主意可真不錯,我就做一回好人吧,我老8供應照相機和膠卷,好吧?」
老4說話了:「8哥,好是好,就是太麻煩了一點,到不如用我的數碼照相機,就這么定了吧。」
於是,它們變忙了起來,終於+號幫它們拍好了,就立刻把數碼照相機送往沖印店,沖是沖好了,電腦姐姐身手想它們要錢,可它們到底誰付錢呢?它們一個個獃獃的望著對方,這是電腦姐姐說:「一共5元錢,你們一共十一個兄弟姐妹,平均一人付多少元錢?」
在它們十一個人中,就數老六最聰明,這回它還是第一個算出了結果,你知道它是怎麼算出來的嗎?

小朋友你們可知道數學天才高斯小時候的故事呢?
高斯念小學的時候,有一次在老師教完加法後,因為老師想要休息,所以便出了一道題目要同學們算算看,題目是:
1+2+3+ ..... +97+98+99+100 = ?
老師心裡正想,這下子小朋友一定要算到下課了吧!正要借口出去時,卻被 高斯叫住了!! 原來呀,高斯已經算出來了,小朋友你可知道他是如何算的嗎?
高斯告訴大家他是如何算出的:把 1加 至 100 與 100 加至 1 排成兩排相加,也就是說:
1+2+3+4+ ..... +96+97+98+99+100
100+99+98+97+96+ ..... +4+3+2+1
=101+101+101+ ..... +101+101+101+101
共有一百個101相加,但算式重復了兩次,所以把10100 除以 2便得到答案等於 <5050>
從此以後高斯小學的學習過程早已經超越了其它的同學,也因此奠定了他以後的數學基礎,更讓他成為——數學天才!

在日常生活中,數學無處不在,比如說:買菜、賣菜、算多少錢……

大約1500年前,歐洲的數學家們是不知道用「0」的。他們使用羅馬數字。羅馬數字是用幾個表示數的符號,按照一定規則,把它們組合起來表示不同的數目。在這種數字的運用里,不需要「0」這個數字。
而在當時,羅馬帝國有一位學者從印度記數法里發現了「0」這個符號。他發現,有了「0」,進行數學運算方便極了,他非常高興,還把印度人使用「0」的方法向大家做了介紹。過了一段時間,這件事被當時的羅馬教皇知道了。當時是歐洲的中世紀,教會的勢力非常大,羅馬教皇的權利更是遠遠超過皇帝。教皇非常惱怒,他斥責說,神聖的數是上帝創造的,在上帝創造的數里沒有「0」這個怪物,如今誰要把它給引進來,誰就是褻瀆上帝!於是,教皇就下令,把這位學者抓了起來,並對他施加了酷刑,用夾子把他的十個手指頭緊緊夾注,使他兩手殘廢,讓他再也不能握筆寫字。就這樣,「0」被那個愚昧、殘忍的羅馬教皇明令禁止了。
但是,雖然「0」被禁止使用,然而羅馬的數學家們還是不管禁令,在數學的研究中仍然秘密地使用「0」,仍然用「0」做出了很多數學上的貢獻。後來「0」終於在歐洲被廣泛使用,而羅馬數字卻逐漸被淘汰了。

唐僧師徒摘桃子
一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不長時間,徒弟三人摘完桃子高高興興回來。師父唐僧問:你們每人各摘回多少個桃子?
八戒憨笑著說:師父,我來考考你。我們每人摘的一樣多,我筐里的桃子不到100個,如果3個3個地數,數到最後還剩1個。你算算,我們每人摘了多少個?
沙僧神秘地說:師父,我也來考考你。我筐里的桃子,如果4個4個地數,數到最後還剩1個。你算算,我們每人摘了多少個?
悟空笑眯眯地說:師父,我也來考考你。我筐里的桃子,如果5個5個地數,數到最後還剩1個。你算算,我們每人摘多少個?
唐僧很快說出他們每人摘桃子的個數。你知道他們每人摘多少個桃子嗎?

動物中的數學「天才」

蜜蜂蜂房是嚴格的六角柱狀體,它的一端是平整的六角形開口,另一端是封閉的六角菱錐形的底,由三個相同的菱形組成。組成底盤的菱形的鈍角為109度28分,所有的銳角為70度32分,這樣既堅固又省料。蜂房的巢壁厚0.073毫米,誤差極小。

丹頂鶴總是成群結隊遷飛,而且排成「人」字形。「人」字形的角度是110度。更精確地計算還表明「人」字形夾角的一半——即每邊與鶴群前進方向的夾角為54度44分8秒!而金剛石結晶體的角度正好也是54度44分8秒!是巧合還是某種大自然的「默契」?

蜘蛛結的「八卦」形網,是既復雜又美麗的八角形幾何圖案,人們即使用直尺的圓規也很難畫出像蜘蛛網那樣勻稱的圖案。

冬天,貓睡覺時總是把身體抱成一個球形,這其間也有數學,因為球形使身體的表面積最小,從而散發的熱量也最少。

真正的數學「天才」是珊瑚蟲。珊瑚蟲在自己的身上記下「日歷」,它們每年在自己的體壁上「刻畫」出365條斑紋,顯然是一天「畫」一條。奇怪的是,古生物學家發現3億5千萬年前的珊瑚蟲每年「畫」出400幅「水彩畫」。天文學家告訴我們,當時地球一天僅21.9小時,一年不是365天,而是400天。(生活時報)

英國詩人捷尼遜寫過一首詩,其中幾行是這樣寫的:「每分鍾都有一個人在死亡,每
分鍾都有一個人在誕生……」有個數學家讀後去信質疑,信上說:「尊敬的閣下,讀罷大
作,令人一快,但有幾行不合邏輯,實難苟同。根據您的演算法,每分鍾生死人數相抵,地
球上的人數是永恆不變的。但您也知道,事實上地球上的人口是不斷地在增長。確切地說
,每分鍾相對地有1.6749人在誕生,這與您在詩中提供的數字出入甚多。為了符合實際,
如果您不反對,我建議您使用7/6這個分數,即將詩句改為:「每分鍾都有一個人死亡,
每分鍾都有一又六分之一人在誕生......」

一位農夫請了工程師、物理學家和數學家來,想用最少的籬笆圍出最大的面積。工程
師用籬笆圍出一個圓,宣稱這是最優設計。物理學家將籬笆拉開成一條長長的直線,假設
籬笆有無限長,認為圍起半個地球總夠大了。數學家好好嘲笑了他們一番。他用很少的籬
笆把自己圍起來,然後說:「我現在是在外面。」

『伍』 誰有關於數學的歷史的故事

歐幾里德(eucild)生於雅典,接受了希臘古典數學及各種科學文化,30歲就成了有名的學者。應當時埃及國王的邀請,他客居亞歷山大城,一邊教學,一邊從事研究。

古希臘的數學研究有著十分悠久的歷史,曾經出過一些幾何學著作,但都是討論某一方面的問題,內容不夠系統。歐幾里德匯集了前人的成果,採用前所未有的獨特編寫方式,先提出定義、公理、公設,然後由簡到繁地證明了一系列定理,討論了平面圖形和立體圖形,還討論了整數、分數、比例等等,終於完成了《幾何原本》這部巨著。

《原本》問世後,它的手抄本流傳了1800多年。1482年印刷發行以後,重版了大約一千版次,還被譯為世界各主要語種。13世紀時曾傳入中國,不久就失傳了,1607年重新翻譯了前六卷,1857年又翻譯了後九卷。

歐幾里德善於用簡單的方法解決復雜的問題。他在人的身影與高正好相等的時刻,測量了金字塔影的長度,解決了當時無人能解的金字塔高度的大難題。他說:「此時塔影的長度就是金字塔的高度。」

歐幾里德是位溫良敦厚的教育家。歐幾里得也是一位治學嚴謹的學者,他反對在做學問時投機取巧和追求名利,反對投機取巧、急功近利的作風。盡管歐幾里德簡化了他的幾何學,國王(托勒密王)還是不理解,希望找一條學習幾何的捷徑。歐幾里德說:「在幾何學里,大家只能走一條路,沒有專為國王鋪設的大道。」這句話成為千古傳誦的學習箴言。一次,他的一個學生問他,學會幾何學有什麼好處?他幽默地對僕人說:「給他三個錢幣,因為他想從學習中獲取實利。」

歐氏還有《已知數》《圖形的分割》等著作。

華羅庚

華羅庚,數學家,中國科學院院士。 1910年11月12日生於江蘇金壇,1985年6月12日卒於日本東京。
1924年金壇中學初中畢業,後刻苦自學。1930年後在清華大學任教。1936年赴英國劍橋大學訪問、學習。1938年回國後任西南聯合大學教授。1946年赴美國,任普林斯頓數學研究所研究員、普林斯頓大學和伊利諾斯大學教授,1950年回國。歷任清華大學教授,中國科學院數學研究所、應用數學研究所所長、名譽所長,中國數學學會理事長、名譽理事長,全國數學競賽委員會主任,美國國家科學院國外院士,第三世界科學院院士,聯邦德國巴伐利亞科學院院士,中國科學院物理學數學化學部副主任、副院長、主席團成員,中國科學技術大學數學系主任、副校長,中國科協副主席,國務院學位委員會委員等職。曾任一至六屆全國人大常務委員,六屆全國政協副主席。曾被授予法國南錫大學、香港中文大學和美國伊利諾斯大學榮譽博士學位。主要從事解析數論、矩陣幾何學、典型群、自守函數論、多復變函數論、偏微分方程、高維數值積分等領域的研究與教授工作並取得突出成就。40年代,解決了高斯完整三角和的估計這一歷史難題,得到了最佳誤差階估計(此結果在數論中有著廣泛的應用);對G.H.哈代與J.E.李特爾伍德關於華林問題及E.賴特關於塔里問題的結果作了重大的改進,至今仍是最佳紀錄。
在代數方面,證明了歷史長久遺留的一維射影幾何的基本定理;給出了體的正規子體一定包含在它的中心之中這個結果的一個簡單而直接的證明,被稱為嘉當-布饒爾-華定理。其專著 《堆壘素數論》系統地總結、發展與改進了哈代與李特爾伍德圓法、維諾格拉多夫三角和估計方法及他本人的方法,發表40餘年來其主要結果仍居世界領先地位,先後被譯為俄、匈、日、德、英文出版,成為20世紀經典數論著作之一。其專著《多個復變典型域上的調和分析》以精密的分析和矩陣技巧,結合群表示論,具體給出了典型域的完整正交系,從而給出了柯西與泊松核的表達式。這項工作在調和分析、復分析、微分方程等研究中有著廣泛深入的影響,曾獲中國自然科學獎一等獎。倡導應用數學與計算機的研製,曾出版《統籌方法平話》、《優選學》等多部著作並在中國推廣應用。與王元教授合作在近代數論方法應用研究方面獲重要成果,被稱為「華-王方法」。在發展數學教育和科學普及方面做出了重要貢獻。發表研究論文200多篇,並有專著和科普性著作數十種。

愛奧尼亞最繁盛的城市是米利都(Miletus,小亞細亞西南角海岸).地居東西方交通的要沖,也是古希臘第一個享譽世界聲譽的學者泰勒斯(Thales 約公元前640-546年)的故鄉.泰勒斯早年是一個商人,以後游歷了巴比倫,埃及等地,很快學會了天文和幾何知識.
自然科學發展的早期,還沒有從哲學分離出來.所以每一個數學家都是哲學家,就像我國每一個數學家都是歷法家一樣.要了解人與自然的關系,以及人在宇宙中所處的位置,首先要研究數學,因為數學可以幫助人們在混沌中找出秩序,按照邏輯推理求得規律.
泰勒斯是公認的希臘哲學家的鼻祖.他創立了愛奧尼亞哲學學派,擺脫了宗教,從自然現象中尋找真理,否認神是世界的主宰.他認為處處有生命和運動,並以水為萬物的根源.泰勒斯有崇高的聲望,被尊為希臘七賢之首.
泰勒斯在數學方面的劃時代的貢獻是開始了命題的證明.他所得到的命題是很簡單的.如圓被任一直徑平分;等腰三角形兩底角相等;兩條直線相交,對頂角相等;相似三角形對應邊成比例;半圓上的圓周角是直角;兩三角形兩角與一邊對應相等,則三角形全等.並且證明了這些命題.
泰勒斯游歷了許多地方,他在埃及的時候,應用相似三角形原理,測出了金字塔的高度,使埃及法老阿美西斯(Amasis 二十六王朝法老)大為驚訝.泰勒斯對於天文也很精通,據說在他的故鄉附近曾經存在過兩個國家:美地亞國(Media)和呂地亞國(Lydia).有一年發生了激烈的戰爭.連續五年未見勝負,橫屍遍野,哀聲載道.泰勒斯預先知道有日食要發生,便揚言上天反對戰爭,某月某日將大怒,太陽將被消逝.到了那一天,兩軍正在酣戰不停,突然太陽失去了光輝,百鳥歸巢,明星閃爍,白晝頓成黑夜.雙方士兵將領大為恐懼,於是停戰和好,後來兩國還互通婚姻.據考證,這次日食發生在公元前585年5月28日.這大概是應用了迦勒底人發現的沙羅周期,根據公元前603年5月18日的日食推得的.
泰勒斯被譽為古希臘數學,天文,哲學之父,是當之無愧的.

斐波那契(Leonardo Fibonacci,約1170-約1250)
義大利數學家,12、13世紀歐洲數學界的代表人物。生於比薩,早年跟隨經商的父親到北非的布日伊(今阿爾及利亞東部的小港口貝賈亞),在那裡受教育。以後到埃及、敘利亞、希臘、西西里、法國等地游歷,熟習了不同國度在商業上的算術體系。1200年左右回到比薩,潛心寫作。

他的書保存下來的共有5種。最重要的是《算盤書》(1202年完成,1228年修訂),算盤並不單指羅馬算盤或沙盤,實際是指一般的計算。

其中最耐人尋味的是,這本書出現了中國《孫子算經》中的不定方程解法。題目是一個不超過105的數分別被 3、5、7除,余數是2、3、4,求這個數。解法和《孫子算經》一樣。另一個「兔子問題」也引起了後人的極大興趣 。題目假定一對大兔子每一個月可以生一對小兔子,而小兔子出生後兩個月就有生殖能力,問從一對大兔子開始, 一年後能繁殖成多少對兔子?這導致「斐波那契數列」:1,1,2,3,5,8,13,21,…,其規律是每一項(從第3項起)都是前兩項的和。這數列與後來的「優選法」有密切關系。

拉格朗日〔Lagrange, Joseph Louis,1736-1813〕

法國數學家。
涉獵力學,著有分析力學。
百年以來數學界仍受其理論影響。

法國數學家、力學家及天文學家拉格朗日於1736年1月25日在義大利西北部的都靈出生。少年時讀了哈雷介紹牛頓有關微積分之短文,因而對分析學產生興趣。他亦常與歐拉有書信往來,於探討數學難題「等周問題」的過程中,當時只有18歲的他就以純分析的方法發展了歐拉所開創的變分法, 奠定變分法之理論基礎。後入都靈大學。 1755年,19歲的他就已當上都靈皇家炮兵學校的數學教授。不久便成為柏林科學院通訊院院士。兩年後,他參與創立都靈科學協會的工作,並於協會出版的科技會刊上發表大量有關變分法、概率論 、微分方程、弦振動及最小作用原理等論文。這些著作使他成為當時歐洲公認的第一流數學家。
到了1764年,他憑萬有引力解釋月球天平動問題獲得法國巴黎科學院獎金。1766年,又因成功地以微分方程理論和近似解法研究科學院所提出的一個復雜的六體問題〔木星的四個衛星的運動問題〕而再度獲獎。 同年,德國普魯士王腓特烈邀請他到柏林科學院工作時說:「歐洲最大的王」的宮廷內應有「歐洲最大的數學家」,於是他應邀到柏林科學院工作,並在那裡居住達20年。其間他寫了繼牛頓後又一重要經典力學著作《分析力學》〔1788〕。書內以變分原理及分析的方法,把完整和諧的力學體系建立起來,使力學分析化。他於序言中更宣稱:力學已成分析的一個分支。
1786年普魯士王腓特烈逝世後,他應法王路易十六之邀,於1787年定居巴黎。其間出任法國米制委員會主任,並先後於巴黎高等師范學院及巴黎綜合工科學校任數學教授。最後於1813年4月10日在當地逝世。
拉格朗日不但於方程論方面貢獻重大,而且還推動了代數學的發展。他在生前提交給柏林科學院的兩篇著名論文:《關於解數值方程》〔1767〕及《關於方程的代數解法的研究》〔1771〕中,考察了 二、三及四次方程的一種普遍性解法,即把方程化作低一次的方程〔輔助方程或預解式〕以求解。 但這並不適用於五次方程。在他有關方程求解條件的研究中早已蘊含了群論思想的萌芽,這使他成為伽羅瓦建立群論之先導。
另外,他在數論方面亦是表現超卓。費馬所提出的許多問題都被他一一解答,如:一正整數是不多於四個平方數之和的問題;求方程x2 - A y 2 = 1〔A為一非平方數〕的全部整數解的問題等。他還證明了π的無理性。這些研究成果都豐富了數論之內容。
此外,他還寫了兩部分析巨著《解析函數論》〔1797〕及《函數計算講義》〔1801〕,總結了那一時期自己一系列的研究工作。 於《解析函數論》及他收入此書的一篇論文〔1772〕中企圖把微分運算歸結為代數運算,從而拼棄自牛頓以來一直令人困惑的無窮小量,為微積分奠定理論基礎方面作出獨特之嘗試。他又把函數f(x) 的導數定義成f(x + h)的泰勒展開式中的h項的系數,並由此為出發點建立全部分析學。可是他並未考慮到無窮級數的收斂性問題,他自以為擺脫了極限概念,實只迴避了極限概念,因此並未達到使微積分代數化、嚴密化的想法。不過,他採用新的微分符號,以冪級數表示函數的處理手法對分析學的發展產生了影響,成為實變函數論的起點。 而且,他還在微分方程理論中作出奇解為積分曲線族的包絡的幾何解釋,提出線性變換的特徵值概念等。
數學界近百多年來的許多成就都可直接或簡接地追溯於拉格朗日的工作。為此他於數學史上被認為是對分析數學的發展產生全面影響的數學家之一。

拉格朗日〔Lagrange, Joseph Louis,1736-1813〕

法國數學家。
涉獵力學,著有分析力學。
百年以來數學界仍受其理論影響。

法國數學家、力學家及天文學家拉格朗日於1736年1月25日在義大利西北部的都靈出生。少年時讀了哈雷介紹牛頓有關微積分之短文,因而對分析學產生興趣。他亦常與歐拉有書信往來,於探討數學難題「等周問題」的過程中,當時只有18歲的他就以純分析的方法發展了歐拉所開創的變分法, 奠定變分法之理論基礎。後入都靈大學。 1755年,19歲的他就已當上都靈皇家炮兵學校的數學教授。不久便成為柏林科學院通訊院院士。兩年後,他參與創立都靈科學協會的工作,並於協會出版的科技會刊上發表大量有關變分法、概率論 、微分方程、弦振動及最小作用原理等論文。這些著作使他成為當時歐洲公認的第一流數學家。
到了1764年,他憑萬有引力解釋月球天平動問題獲得法國巴黎科學院獎金。1766年,又因成功地以微分方程理論和近似解法研究科學院所提出的一個復雜的六體問題〔木星的四個衛星的運動問題〕而再度獲獎。 同年,德國普魯士王腓特烈邀請他到柏林科學院工作時說:「歐洲最大的王」的宮廷內應有「歐洲最大的數學家」,於是他應邀到柏林科學院工作,並在那裡居住達20年。其間他寫了繼牛頓後又一重要經典力學著作《分析力學》〔1788〕。書內以變分原理及分析的方法,把完整和諧的力學體系建立起來,使力學分析化。他於序言中更宣稱:力學已成分析的一個分支。
1786年普魯士王腓特烈逝世後,他應法王路易十六之邀,於1787年定居巴黎。其間出任法國米制委員會主任,並先後於巴黎高等師范學院及巴黎綜合工科學校任數學教授。最後於1813年4月10日在當地逝世。
拉格朗日不但於方程論方面貢獻重大,而且還推動了代數學的發展。他在生前提交給柏林科學院的兩篇著名論文:《關於解數值方程》〔1767〕及《關於方程的代數解法的研究》〔1771〕中,考察了 二、三及四次方程的一種普遍性解法,即把方程化作低一次的方程〔輔助方程或預解式〕以求解。 但這並不適用於五次方程。在他有關方程求解條件的研究中早已蘊含了群論思想的萌芽,這使他成為伽羅瓦建立群論之先導。
另外,他在數論方面亦是表現超卓。費馬所提出的許多問題都被他一一解答,如:一正整數是不多於四個平方數之和的問題;求方程x2 - A y 2 = 1〔A為一非平方數〕的全部整數解的問題等。他還證明了π的無理性。這些研究成果都豐富了數論之內容。
此外,他還寫了兩部分析巨著《解析函數論》〔1797〕及《函數計算講義》〔1801〕,總結了那一時期自己一系列的研究工作。 於《解析函數論》及他收入此書的一篇論文〔1772〕中企圖把微分運算歸結為代數運算,從而拼棄自牛頓以來一直令人困惑的無窮小量,為微積分奠定理論基礎方面作出獨特之嘗試。他又把函數f(x) 的導數定義成f(x + h)的泰勒展開式中的h項的系數,並由此為出發點建立全部分析學。可是他並未考慮到無窮級數的收斂性問題,他自以為擺脫了極限概念,實只迴避了極限概念,因此並未達到使微積分代數化、嚴密化的想法。不過,他採用新的微分符號,以冪級數表示函數的處理手法對分析學的發展產生了影響,成為實變函數論的起點。 而且,他還在微分方程理論中作出奇解為積分曲線族的包絡的幾何解釋,提出線性變換的特徵值概念等。
數學界近百多年來的許多成就都可直接或簡接地追溯於拉格朗日的工作。為此他於數學史上被認為是對分析數學的發展產生全面影響的數學家之一。

『陸』 歷史上數學家的小故事,越多越好

瑞士數學家歐拉早年曾受過良好的神學教育,成為數學家後在俄國宮廷供職。

有一次,俄國女皇邀請法國哲學家狄德羅訪問她的宮廷。狄德羅試圖通過使朝臣改信無神論來證明他是值得被邀請的。女皇厭倦了,她命令歐拉去讓這位哲學家閉嘴。於是,狄德羅被告知,一個有學問的數學家用代數證明了上帝的存在,要是他想聽的話,這位數學家將當著所有朝臣的面給出這個證明。狄德羅高興地接受了挑戰。

第二天,在宮廷上,歐拉朝狄德羅走去,用一種非常肯定的聲調一本正經地說:「先生,,因此上帝存在。請回答!」對狄德羅來說,這聽起來好像有點道理,他困惑得不知說什麼好。周圍的人報以縱聲大笑,使這個可憐的人覺得受了羞辱。他請求女皇答應他立即返回法國,女皇神態自若地答應了。

就這樣,一個偉大的數學家用欺騙的手段「戰勝」了一個偉大的哲學家。

拉普拉斯和拉格朗日是19世紀初法國的兩位數學家。拉普拉斯在數學上十分偉大,在政治上卻是一個十足的小人,每次政權更迭,他都能夠見風使舵,毫無政治操守可言。拉普拉斯曾把他的巨著《天體力學》獻給拿破崙。拿破崙想惹惱拉普拉斯,責備他犯了一個明顯的疏忽:「你寫了一本關於世界體系的書,卻一次也沒有提到宇宙的創造者——上帝。」

拉普拉斯反駁說:「陛下,我不需要這樣一個假設。」

當拿破崙向拉格朗日復述這句話時,拉格朗日說:「啊,但那是一個很好的假設,它說明了許多問題。」

兩個神童19世紀初,在大西洋兩岸出現了兩個神童:一個是英國少年哈密頓,另一個是美國孩子科爾伯恩哈密頓的天才表現在語言學上,他8歲時就已經掌握了英文、拉丁文、希臘文和希伯萊文;12歲時已熟練地掌握了波斯語、阿拉伯語、馬來語和孟加拉語,只是由於沒有教科書,他才沒有學習漢語。科爾伯恩則在數學上表現出神奇的天才,小時候,有人問他4294967297是否是素數時,他立刻回答不是,因為它有641作為除數。類似的例子多得不勝枚舉,但他不能解釋他得出正確結論的過程。

人們把兩個神童帶到一起,這次會面是奇妙的,現在已經無法確知他們交談了什麼,但結果卻是完全出人意料的:科爾伯恩的數學天賦完全「移植」給了哈密頓;哈密頓放棄了語言學,投身數學,成為愛爾蘭歷史上最偉大的數學家。

至於科爾伯恩,他的天才漸漸消失了。

數學家之死挪威數學家阿貝爾22歲的時候就對數學的發展做出了重大的貢獻,但並不為當時的數學界所接受。他過著窮困潦倒的生活,這嚴重地影響了他的健康,他得了肺結核,這在當時是絕症。在最後的幾個星期,他一直在考慮他的未婚姐的未來。他寫信給他最好的朋友基爾豪:「她並不美麗,有著一頭紅發和雀斑,但她是一個可愛的女子。」雖然基爾豪和肯普從未見過面,但阿貝爾希望他們兩個能夠結婚。

肯普小姐照料阿貝爾度過了生命的最後時刻。在葬禮上,她與專程趕來的基爾豪相遇了。基爾豪幫助她克服了悲傷,他們相愛並結了婚。正如阿貝爾所希望的那樣,基爾豪和肯普婚後十分幸福,他們經常到阿貝爾墓前去懷念他。隨著歲月的流逝,他們發現越來越多的人從各地趕來,為阿貝爾在數學上的貢獻向他表達他們遲到的敬意,而他們只是這一朝聖隊伍中的一對普通的朝聖者。

1832年5月29日,法國年輕氣盛的伽羅瓦為了所謂的「愛情與榮譽」打算和另外一個人決斗。他知道對手的槍法很好,自己獲勝的希望很小,很可能會死去。他問自己,如何度過這最後的夜晚?在這之前,他曾寫過兩篇數學論文,但都被權威輕蔑地拒絕了:一次是被偉大的數學家柯西;另一次是被神聖的法蘭西科學院他頭腦中的東西是有價值的。整個晚上,他把飛逝的時間用來焦躁地一氣寫出他在科學上的遺言。在死亡之前盡快地寫,把他豐富的思想中那些偉大的東西盡量寫出來。他不時中斷,在紙邊空白處寫上「我沒有時間,我沒有時間」,然後又接著寫下一個極其潦草的大綱。

他在天亮之前那最後幾個小時寫出的東西,一勞永逸地為一個折磨了數學家們幾個世紀的問題找到了真正的答案,並且開創了數學的一個極為重要的分支——群論。

第二天上午,在決斗場上,他被打穿了腸子。死之前,他對在他身邊哭泣的弟弟說:「不要哭,我需要足夠的勇氣在20歲的時候死去。」他被埋葬在公墓的普通壕溝內,所以今天他的墳墓已無蹤跡可尋。他不朽的紀念碑是他的著作,由兩篇被拒絕的論文和他在死前那個不眠之夜寫下的潦草手稿組成。

數學家的問題費馬是17世紀法國圖盧茲議會的議員,一個誠實而勤奮的人,同時也是歷史上最傑出的數學業余愛好者。在其一生中,他給後代留下了大量極其美妙的定理;同時,由於一時的疏忽,也向後世的數學家們提出了嚴峻的挑戰。

費馬有一個習慣,他在讀書的時候喜歡把思考的結果簡略。有一次,他在閱讀時寫下了這樣的話:「……將一個高於2次的冪分為兩個同次的冪,這是不可能的。關於此,我確信已發現一種美妙的證法,可惜這里空白的地方太小,寫不下。」這個定理現在被命名為「費馬大定理」,即:不可能有滿足xn+yn=zn這就是費馬對後世的挑戰。為了尋找這個定理的證明,後世無數的數學家發起了一次又一次的沖鋒,但都敗下陣來。1908年,一位德國富翁曾經懸賞10萬馬克的巨款,獎勵第一個對「費馬大定理」完全證明的人。自此定理提出後,數學家們奮鬥了300多年,還是沒有證出來。但這個定理肯定存在,費馬知道它。

在數學上,「費馬大定理」已成為一座比珠穆朗瑪峰更高的山峰,人類的數學智慧只有一次達到過這樣的高度,從那以後,再也沒有達到過。

『柒』 有關於數學計算的歷史的小故事

1、數字「0」的故事

羅馬數字是用幾個表示數的符號,按照一定規則,把它們組合起來表示不同的數目。在這種數字的運用里,不需要「0」這個數字。

當時,羅馬帝國有一位學者從印度記數法里發現了「0」這個符號。他發現,有了「0」,進行數學運算方便極了,還把印度人使用「0」的方法向大家做了介紹。

這件事被當時的羅馬教皇知道了。教皇非常惱怒,他斥責說,神聖的數是上帝創造的,在上帝創造的數里沒有「0」這個怪物,於是下令,把這位學者抓了起來,用夾子把他的十個手指頭緊緊夾住,使他兩手殘廢,讓他再也不能握筆寫字。就這樣,「0」被那個愚昧、殘忍的羅馬教皇明令禁止了。

但是,雖然「0」被禁止使用,然而羅馬的數學家們還是不管禁令,在數學的研究中仍然秘密地使用「0」,仍然用「0」做出了很多數學上的貢獻。後來「0」終於在歐洲被廣泛使用,而羅馬數字卻逐漸被淘汰了。

2、田忌賽馬

戰國時期,齊威王與大將田忌賽馬,齊威王和田忌各有三匹好馬:上馬,中馬與下馬。比賽分三次進行,每賽馬以千金作賭。由於兩者的馬力相差無幾,而齊威王的馬分別比田忌的相應等級的馬要好,所以一般人都以為田忌必輸無疑。

但是田忌採納了門客孫臏(著名軍事家)的意見,用下馬對齊威王的上馬,用上馬對齊威王的中馬,用中馬對齊威王的下馬,結果田忌以2比1勝齊威王而得千金。這是我國古代運用對策論思想解決問題的一個範例。

3、影子測量

泰勒斯看到人們都在看告示,便上去看。原來告示上寫著法老要找世界上最聰明的人來測量金字塔的高度。於是就找法老。

法老問泰勒斯用什麼工具來量金字塔。泰勒斯說只用一根木棍和一把尺子,他把木棍插在金字塔旁邊,等木棍的影子和木棍一樣長的時候,他量了金字塔影子的長度和金字塔底面邊長的一半。把這兩個長度加起來就是金字塔的高度了。泰勒斯真是世界上最聰明的人,他不用爬到金字塔的頂上就方便量出了金字塔的高度。

4、喝水

唐僧師徒四人走在無邊無際的沙漠上,他們又餓又累,豬八戒想:如果有一頓美餐該有多好啊!孫悟空可沒有八戒那麼貪心,悟空只想喝一杯水就夠了。孫悟空想著想著,眼前就出現了一戶人家,門口的桌上正好放了一杯牛奶,孫悟空連忙上前,准備把這杯牛奶喝了,可主人家卻說:「大聖且慢,如果您想喝這杯奶就必須回答對一道數學題。」

孫悟空想,不就一道數學題嗎,難不倒俺老孫。孫悟空就答應了。那位主人家出題:倒了一杯牛奶,你先喝了1/2加滿水,再喝1/3,又加滿水,最後把這杯飲料全喝下,問你喝的牛奶和水哪個多些?為什麼?

5、雞兔同籠

雞兔同籠這個問題,是我國古代著名趣題之一。大約在1500年前,《孫子算經》就記載了這個有趣的問題。書中是這樣敘述的:今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?

這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數,有35個頭;從下面數,有94隻腳。求籠中各有幾只雞和兔?你會解答這個問題嗎?你想知道《孫子算經》中是如何解答這個問題的嗎?

解答思路是這樣的:假如砍去每隻雞、每隻兔一半的腳,則每隻雞就變成了「獨角雞」,每隻兔就變成了「雙腳兔」。這樣,(1)雞和兔的腳的總數就由94隻變成了47隻;(2)如果籠子里有一隻兔子,則腳的總數就比頭的總數多1。

因此,腳的總只數47與總頭數35的差,就是兔子的只數,即47-35=12(只)。顯然,雞的只數就是35-12=23(只)了。

這一思路新穎而奇特,其「砍足法」也令古今中外數學家贊嘆不已。這種思維方法叫化歸法。化歸法就是在解決問題時,先不對問題採取直接的分析,而是將題中的條件或問題進行變形,使之轉化,直到最終把它歸成某個已經解決的問題。

『捌』 數學發展史上的小故事有哪些

八歲的高斯發現了數學定理

德國著名大科學家高斯(1777~1855)出生在一個貧窮的家庭。高斯在還不會講話就自己學計算,在三歲時有一天晚上他看著父親在算工錢時,還糾正父親計算的錯誤。

長大後他成為當代最傑出的天文學家、數學家。他在物理的電磁學方面有一些貢獻,現在電磁學的一個單位就是用他的名字命名。數學家們則稱呼他為「數學王子」。

他八歲時進入鄉村小學讀書。教數學的老師是一個從城裡來的人,覺得在一個窮鄉僻壤教幾個小猢猻讀書,真是大材小用。而他又有些偏見:窮人的孩子天生都是笨蛋,教這些蠢笨的孩子念書不必認真,如果有機會還應該處罰他們,使自己在這枯燥的生活里添一些樂趣。

這一天正是數學教師情緒低落的一天。同學們看到老師那抑鬱的臉孔,心裡畏縮起來,知道老師又會在今天捉這些學生處罰了。

「你們今天替我算從1加2加3一直到100的和。誰算不出來就罰他不能回家吃午飯。」老師講了這句話後就一言不發的拿起一本小說坐在椅子上看去了。

教室里的小朋友們拿起石板開始計算:「1加2等於3,3加3等於6,6加4等於10……」一些小朋友加到一個數後就擦掉石板上的結果,再加下去,數越來越大,很不好算。有些孩子的小臉孔漲紅了,有些手心、額上滲出了汗來。

還不到半個小時,小高斯拿起了他的石板走上前去。「老師,答案是不是這樣?」

老師頭也不抬,揮著那肥厚的手,說:「去,回去再算!錯了。」他想不可能這么快就會有答案了。

可是高斯卻站著不動,把石板伸向老師面前:「老師!我想這個答案是對的。」

數學老師本來想怒吼起來,可是一看石板上整整齊齊寫了這樣的數:5050,他驚奇起來,因為他自己曾經算過,得到的數也是5050,這個8歲的小鬼怎麼這樣快就得到了這個數值呢?

高斯解釋他發現的一個方法,這個方法就是古時希臘人和中國人用來計算級數1+2+3+…+n的方法。高斯的發現使老師覺得羞愧,覺得自己以前目空一切和輕視窮人家的孩子的觀點是不對的。他以後也認真教起書來,並且還常從城裡買些數學書自己進修並借給高斯看。在他的鼓勵下,高斯以後便在數學上作了一些重要的研究了。

『玖』 有關於數學計算的歷史的小故事

這是一個生產數學家和物理學家的部落,有著十幾位優秀的科學家都擁有這個令人驕傲的姓氏。

John Bernoulli在1696年把最速降線問題在一個叫做《教師學報》的雜志上面提出,公開挑戰主要是針對他的哥哥Jacobi.Bernoulli,這兩個人在學術讓一直相互不忿,據說當年John求懸鏈線的方程,熬了一夜就搞定了,Jacobi做了一年還認為懸鏈線應該是拋物線,實在是很沒面子。那個雜志好像是Leibniz搞得,很牛,歐洲的牛人們都來做這個東西。到最後,Jhon收的了5份答案,有他自己的,Leibniz的,還有一個L.Hospital侯爵的(我們比較喜歡的那個L.Hospital法則好像是他僱人做的,是個有錢人)然後是他哥哥Jacobi的,最後一份是蓋著英國郵戳的,必然是Newton的,John自己說「我從它的利爪上認出了這頭獅子.」據說當年Newton從造幣廠回去,看到了Bernoulli的題,感覺渾身不爽,熬夜到凌晨4點,就搞定了。這么多解答當中,John的應該是最漂亮的,類比了Fermat原理,用光學一下做了出來。但是從影響來說,Jacobi的做法真正體現了變分思想。

Bernoulli一家在歐洲享有盛譽,有一個傳說,講的是Daniel Bernoulli(他是John Bernoulli的兒子)有一次正在做穿過歐洲的旅行,他與一個陌生人聊天,他很謙虛的自我介紹:「我是Daniel Bernoullis。"那個人當時就怒了,說:「我是還是Issac

Newton呢。」Daniel從此之後在很多的場合深情的回憶起這一次經歷把他當作他曾經聽過的最衷心的贊揚。

John &: Jacobi這兩個Bernoulli人,都算不出來自然數倒數的平方和這個級數,Euler從他老師John那裡知道的,並且給出了π2/6這個正確的答案。

法國有一個哲學家,叫做Denis Diderot,中文的名字叫做狄德羅,是個無神論者,這個讓葉卡捷琳娜女皇不爽,於是他請Euler來教育一下Diderot,其實Euler本來是弄神學的,他老爸就是的,後來是好幾個叫Bernoulli的去勸他父親,才讓Euler做數學了。Euler邀請Diderot來了皇宮,他這次的工作是證明上帝的存在性,然後,在眾人面前說:「先生,( a + bn ) / n = x, 因此上帝存在;請回答!」Diderot自然不懂代數,於是被羞辱,顯然他面對的是歐洲最偉大的數學家,他不得不離開聖彼得堡,回到了巴黎……

四色定理

證明是一個偶像,數學家在這個偶像前折磨自己。 ——A.Eddington

1.

一次拓撲課,Minkowski向學生們自負的宣稱:「這個定理沒有證明的最要的原因是至今

只有一些三流的數學家在這上面花過時間。下面我就來證明它。」…….這節課結束的時

候,沒有證完,到下一次課的時候,Minkowski繼續證明,一直幾個星期過去了……一個

陰霾的早上,Minkowski跨入教室,那時候,恰好一道閃電劃過長空,雷聲震耳,Minkowski很嚴肅的說:「上天被我的驕傲激怒了,我的證明是不完全的……。

2.

1942年的時候,Lefschetz去Havard做了個報告,Birkhoff是他的好朋友,講座結束之後,就問他最近在Princeton有沒有什麼有意思的東西。Lefschetz說有一個人剛剛證明了四色猜想。Birkhoff嚴重的不相信,說要是這是真的,就用手和膝蓋,直接爬到Princeton的Fine Hall去。

做數論的人 (1)

從實用的觀點來判斷,我的數學生涯的價值等於零。 ——Hardy

1.

Lev Landau這位俄國最偉大的物理學家驚嘆道:「為什麼素數要相加呢?素數是用來相乘而不是相加的。」據說這是Landau看了Goldbach(哥德巴赫)猜想之後的感覺。術業有專攻呀......

2.

Graham說:「我知道一數論學家,他僅在素數的日子和妻子同房:在月初,這是挺不錯的,2,3,5,7;但是到月終的日子就顯得難過了,先是素數變稀,19,23,然後是一個大的間隙,一下子就蹦到了29,……」

3.

由於Fermat大定理的名聲,在New York的地鐵車站出現了亂塗在牆上的話:x^n + y^n = z^n 沒有解對此我已經發現了一種真正美妙的證明,可惜我現在沒時間寫出來,因為我的火車正在開來。

4.

Hilbert曾有一個學生,給了他一篇論文來證明Riemann猜想,盡管其中有個無法挽回的錯誤,Hilbert還是被深深地吸引了。第二年,這個學生不知道怎麼回事死了,Hilbert要求在葬禮上做一個演說。那天,風雨瑟瑟,這個學生的家屬們哀不勝收。Hilbert開始致詞,首先指出,這樣的天才這么早離開我們實在是痛惜呀,眾人同感,哭得越來越凶。接下來,Hilbert說,盡管這個人的證明有錯,但是如果按照這條路走,應該有可能證明Riemann猜想,再接下來,Hilbert繼續熱烈的冒雨講道:「事實上,讓我們考慮一個單變數的復函數.....」眾人皆倒。

5.

有一個人叫做Paul Wolfskehl,大學讀過數學,痴狂的迷戀一個漂亮的女孩子,令他沮喪的是他被無數次被拒絕。感到無所依靠,於是定下了自殺的日子,決定在午夜鍾聲響起的時候,告別這個世界,再也不理會塵世間的事。Wolfskehl在剩下的日子裡依然努力的工作,當然不是數學,而是一些商業的東西,最後一天,他寫了遺囑,並且給他所有的朋友親戚寫了信。由於他的效率比較高的緣故,在午夜之前,他就搞定了所有的事情,剩下的幾個小時,他就跑到了圖書館,隨便翻起了數學書。很快,被Kummer解釋Cauchy等前人做Fermat大定理為什麼不行的一篇論文吸引住了。那是一篇偉大的論文,適合要自殺的數學家最後的時刻閱讀。Wolfskehl竟然發現了Kummer的一個bug,一直到黎明的時候,他做出了這個證明。他自己狂驕傲不止,於是一切皆成煙雲……這樣他重新立了遺囑,把他財產的一大部分設為一個獎,講給第一個證明Fermat定理的人10萬馬克……這就是Wolfskehl獎的來歷。
伊薩克·巴羅(1630-1677年)是英國著名的數學家,曾任劍橋大學數學教授,對幾何學頗有建樹。他還是位名教士,著有大量久負盛名的佈道文。他為人謙和可親,然而卻與當時的國王查理二世的寵臣羅切斯特伯爵結下了難解之仇,只要遇到一起,終免不了舌戰。

據說,羅切斯特曾將巴羅教士譏為「一座發霉的神學院」。

某日,巴羅為國王作祈禱後與羅切斯特狹路相逢。

羅切斯特向巴羅深深地鞠了一躬後,語帶譏諷地說:「博士,請您幫我繫上鞋帶。」

巴羅答道:「我請您躺到地上去,爵爺。」

「博士,我請您到地獄的中心去。」

「爵爺,我請您站在我對面。」

「博士,我請您到地獄的最深層去。」

「不敢,爵爺,這樣高雅的宮殿應留給您這樣有身分的人啊!」說完,巴羅聳聳肩走開了。

碑文的奧秘

古希臘亞歷山大里亞的著名數學家丟番圖,人們只知道他是公元3世紀的人,其年齡和生平史籍上都沒有明確的記載。但是,在他的墓碑上可以得知一二,而且它告訴人們,他終年是84歲。

丟番圖的墓碑是這樣的:

丟番圖長眠於此,倘若你懂得碑文的奧秘,它會告訴你丟番圖的壽命。諸神賜予他的生命的1/6是童年,再過了生命的1/12,他長出了胡須,其後丟番圖結了婚,不過還不曾有孩子,這樣又度過了一生的1/7,再過5年,他獲得了頭生子,然而他的愛子竟然早逝,只活了丟番圖壽命的一半,喪子以後,他在數學研究中尋求慰藉,又度過了4年,終於也結束了自己的一生。

數學家的遺囑

阿拉伯數學家花拉子密的遺囑,當時他的妻子正懷著他們的第一胎小孩。「如果我親愛的妻子幫我生個兒子,我的兒子將繼承三分之二的遺產,我的妻子將得三分之一;如果是生女的,我的妻子將繼承三分之二的遺產,我的女兒將得三分之一。」。

而不幸的是,在孩子出生前,這位數學家就去世了。之後,發生的事更困擾大家,他的妻子幫他生了一對龍鳳胎,而問題就發生在他的遺囑內容。

如何遵照數學家的遺囑,將遺產分給他的妻子、兒子、女兒呢?

不是洗澡堂

德國女數學家愛米·諾德,雖已獲得博士學位,但無開課「資格」,因為她需要另寫論文後,教授才會討論是否授予她講師資格。

當時,著名數學家希爾伯特十分欣賞愛米的才能,他到處奔走,要求批准她為哥廷根大學的第一名女講師,但在教授會上還是出現了爭論。

一位教授激動地說:「怎麼能讓女人當講師呢?如果讓她當講師,以後她就要成為教授,甚至進大學評議會。難道能允許一個女人進入大學最高學術機構嗎?」

另一位教授說:「當我們的戰士從戰場回到課堂,發現自己拜倒在女人腳下讀書,會作何感想呢?」

希爾伯特站起來,堅定地批駁道:「先生們,候選人的性別絕不應成為反對她當講師的理由。大學評議會畢竟不是洗澡堂!」

終生只能單身

德國傑出的自然學家亞歷山大·洪堡德在喀山拜訪俄國非歐幾何學的創建者羅巴切夫斯基時,他問數學家:「為什麼您只研究數學呢?據說您對礦物學造詣很深,您對植物學也很精通。」

什麼您只研究數學呢?據說您對礦物學造詣很深,您對植物學也很精通。」

「是的,我很喜歡植物學,」羅巴切夫斯基回答說,「將來等我結了婚,我一定搞一個溫室……」

「那您就趕快結婚吧。」

「可是恰恰與願望相反,植物學和礦物學的業余愛好使我終生只能是單身漢了。」

蝴蝶效應

氣象學家Lorenz提出一篇論文,名叫「一隻蝴蝶拍一下翅膀會不會在Taxas州引起龍卷風?」論述某系統如果初期條件差一點點,結果會很不穩定,他把這種現象戲稱做「蝴蝶效應」。就像我們投擲骰子兩次,無論我們如何刻意去投擲,兩次的物理現象和投出的點數也不一定是相同的。Lorenz為何要寫這篇論文呢?

這故事發生在1961年的某個冬天,他如往常一般在辦公室操作氣象電腦。平時,他只需要將溫度、濕度、壓力等氣象數據輸入,電腦就會依據三個內建的微分方程式,計算出下一刻可能的氣象數據,因此模擬出氣象變化圖。

這一天,Lorenz想更進一步了解某段紀錄的後續變化,他把某時刻的氣象數據重新輸入電腦,讓電腦計算出更多的後續結果。當時,電腦處理數據資料的數度不快,在結果出來之前,足夠他喝杯咖啡並和友人閑聊一陣。在一小時後,結果出來了,不過令他目瞪口呆。結果和原資訊兩相比較,初期數據還差不多,越到後期,數據差異就越大了,就像是不同的兩筆資訊。而問題並不出在電腦,問題是他輸入的數據差了0.000127,而這些微的差異卻造成天壤之別。所以長期的准確預測天氣是不可能的。

韓信點兵

韓信點兵又稱為中國剩餘定理,相傳漢高祖劉邦問大將軍韓信統御兵士多少,韓信答說,每3人一列餘1人、5人一列餘2人、7人一列餘4人、13人一列餘6人……。劉邦茫然而不知其數。

我們先考慮下列的問題:假設兵不滿一萬,每5人一列、9人一列、13人一列、17人一列都剩3人,則兵有多少?

首先我們先求5、9、13、17之最小公倍數9945(註:因為5、9、13、17為兩兩互質的整數,故其最小公倍數為這些數的積),然後再加3,得9948(人)。

中國有一本數學古書「孫子算經」也有類似的問題:「今有物,不知其數,三三數之,剩二,五五數之,剩三,七七數之,剩二,問物幾何?」
答曰:「二十三」
術曰:「三三數之剩二,置一百四十,五五數之剩三,置六十三,七七數之剩二,置三十,並之,得二百三十三,以二百一十減之,即得。凡三三數之剩一,則置七十,五五數之剩一,則置二十一,七七數之剩一,則置十五,即得。」
孫子算經的作者及確實著作年代均不可考。不過根據考證,著作年代不會在晉朝之後,以這個考證來說上面這種問題的解法,中國人發現得比西方早,所以這個問題的推廣及其解法,被稱為中國剩餘定理。中國剩餘定理(Chinese Remainder Theorem)在近代抽象代數學中佔有一席非常重要的地位

『拾』 數學歷史上100字的小故事

1、庫默爾屈就為一個中學教師時,有一天上課,在黑板上運算卻忘了七和九的乘積!他猶豫很久講不下去時,有學生說答案是61,他依著寫下了。

怎知另一聲音說他應該寫69。庫默爾當然曉得正確答案只有一個,至於是61、69或其他數目,他不能決定了。於是他開始分析,高聲說61是質數,不會是一個乘積,65是5的倍數,67也是質數69看來太大,所以答案是63吧!

2、公元前46年,羅馬統帥儒略·愷撒指定歷法。由於他出生在7月,為了表示他的偉大,決定將7月改為「儒略月」,連同所有的單月都規定為31天,雙月為30天。這樣一年多出一天,2月是古羅馬處死犯人的月份,為了減少處死的人數,將2月減少1天,為29天。

3、敘拉古的亥厄洛王叫金匠造一頂純金的皇冠,因懷疑裡面摻有銀,便請阿基米德鑒定。當他進入浴盆洗澡時,水漫溢到盆外,於是悟得不同質料的物體,雖然重量相同,但因體積不同,排去的水也必不相等。根據這一道理,就可以判斷皇冠是否摻假。

4、華羅庚上中學時,在一次數學課上,老師給同學們出了一道著名的難題:「有一個數,3個3個地數,還餘2;5個5個地數,還餘3;7個7個地數,還餘2,請問這個得數是多少?」大家正在思考時,華羅庚站起來說:「23」他的回答使老師驚喜不已,並得到老師的表揚。

5、公元前500年,古希臘畢達哥拉斯(Pythagoras)學派的弟-子希勃索斯(Hippasus)發現了一個驚人的事實,一個正方形的對角線與其一邊的長度是不可公度的(若正方形邊長是1,則對角線的長不是一個有理數)這一不可公度性與畢氏學派「萬物皆為數」(指有理數)的哲理大相徑庭。

這一發現使該學派領導人惶恐、惱怒,認為這將動搖他們在學術界的統治地位。希勃索斯因此被囚禁,受到百般折磨,最後競遭到沉舟身亡的懲處。

不可通約的本質是什麼?長期以來眾說紛壇,得不到正確的解釋,兩個不可通約的比值也一直被認為是不可理喻的數。15世紀義大利著名畫家達.芬奇稱之為「無理的數」,17世紀德國天文學家開普勒稱之為「不可名狀」的數。

然而,真理畢竟是淹沒不了的,畢氏學派抹殺真理才是「無理」。人們為了紀念希勃索斯這位為真理而獻身的可敬學者,就把不可通約的量取名為「無理數」——這便是「無理數」的由來。

同時它導致了第一次數學危機。

熱點內容
幼師專業怎麼樣 發布:2021-03-16 21:42:13 瀏覽:24
音樂小毛驢故事 發布:2021-03-16 21:40:57 瀏覽:196
昂立中學生教育閘北 發布:2021-03-16 21:40:47 瀏覽:568
建築業一建報考條件 發布:2021-03-16 21:39:53 瀏覽:666
2017年教師資格注冊結果 發布:2021-03-16 21:39:49 瀏覽:642
中國教師資格證查分 發布:2021-03-16 21:39:41 瀏覽:133
踵什麼成語有哪些 發布:2021-03-16 21:38:20 瀏覽:962
東營幼師專業學校 發布:2021-03-16 21:35:26 瀏覽:467
機械電子研究生課程 發布:2021-03-16 21:33:36 瀏覽:875
杭州朝日教育培訓中心怎麼樣 發布:2021-03-16 21:33:28 瀏覽:238