當前位置:首頁 » 童話故事 » 數學家的故事10篇

數學家的故事10篇

發布時間: 2020-11-20 22:20:07

⑴ 誰有5-10篇數學家的故事或者是數學趣味題快!

數學家的故事——蘇步青

蘇步青1902年9月出生在浙江省平陽縣的一個山村裡。雖然家境清貧,可他父母省吃儉用,拚死拼活也要供他上學。他在讀初中時,對數學並不感興趣,覺得數學太簡單,一學就懂。可量,後來的一堂數學課影響了他一生的道路。
那是蘇步青上初三時,他就讀浙江省六十中來了一位剛從東京留學歸來的教數學課的楊老師。第一堂課楊老師沒有講數學,而是講故事。他說:「當今世界,弱肉強食,世界列強依仗船堅炮利,都想蠶食瓜分中國。中華亡國滅種的危險迫在眉睫,振興科學,發展實業,救亡圖存,在此一舉。『天下興亡,匹夫有責』,在座的每一位同學都有責任。」他旁徵博引,講述了數學在現代科學技術發展中的巨大作用。這堂課的最後一句話是:「為了救亡圖存,必須振興科學。數學是科學的開路先鋒,為了發展科學,必須學好數學。」蘇步青一生不知聽過多少堂課,但這一堂課使他終身難忘。
楊老師的課深深地打動了他,給他的思想注入了新的興奮劑。讀書,不僅為了擺脫個人困境,而是要拯救中國廣大的苦難民眾;讀書,不僅是為了個人找出路,而是為中華民族求新生。當天晚上,蘇步青輾轉反側,徹夜難眠。在楊老師的影響下,蘇步青的興趣從文學轉向了數學,並從此立下了「讀書不忘救國,救國不忘讀書」的座右銘。一迷上數學,不管是酷暑隆冬,霜晨雪夜,蘇步青只知道讀書、思考、解題、演算,4年中演算了上萬道數學習題。現在溫州一中(即當時省立十中)還珍藏著蘇步青一本幾何練習薄,用毛筆書寫,工工整整。中學畢業時,蘇步青門門功課都在90分以上。
17歲時,蘇步青赴日留學,並以第一名的成績考取東京高等工業學校,在那裡他如飢似渴地學習著。為國爭光的信念驅使蘇步青較早地進入了數學的研究領域,在完成學業的同時,寫了30多篇論文,在微分幾何方面取得令人矚目的成果,並於1931年獲得理學博士學位。獲得博士之前,蘇步青已在日本帝國大學數學系當講師,正當日本一個大學准備聘他去任待遇優厚的副教授時,蘇步青卻決定回國,回到撫育他成長的祖任教。回到浙大任教授的蘇步青,生活十分艱苦。面對困境,蘇步青的回答是「吃苦算得了什麼,我甘心情願,因為我選擇了一條正確的道路,這是一條愛國的光明之路啊!」
這就是老一輩數學家那顆愛國的赤子之心

數學家的墓誌銘

一些數學家生前獻身於數學,死後在他們的墓碑上,刻著代表著他們生平業績的標志。
古希臘學者阿基米德死於進攻西西里島的羅馬敵兵之手(死前他還在主:「不要弄壞我的圓」。)後,人們為紀念他便在其墓碑上刻上球內切於圓柱的圖形,以紀念他發現球的體積和表面積均為其外切圓柱體積和表面積的三分之二。 德國數學家高斯在他研究發現了正十七邊形的尺規作法後,便放棄原來立志學文的打算 而獻身於數學,以至在數學上作出許多重大貢獻。甚至他在遺囑中曾建議為他建造正十七邊形的稜柱為底座的墓碑。
16世紀德國數學家魯道夫,花了畢生精力,把圓周率算到小數後35位,後人稱之為魯 道夫數,他死後別人便把這個數刻到他的墓碑上。 瑞士數學家雅谷·伯努利,生前對螺線(被譽為生命之線)有研究,他死之後,墓碑上 就刻著一條對數螺線,同時碑文上還寫著:「我雖然改變了,但卻和原來一樣」。這是一句既刻劃螺線性質又象徵他對數學熱愛的雙關語

祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.
祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率, 外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".
祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元.
祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算.他們當時採用的一條原理是:"冪勢既同,則積不容異."意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理, 但這是在祖氏以後一千多年才由卡氏發現的.為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為"祖暅原理".

初中趣味數學題

1、 兩個男孩各騎一輛自行車,從相距2O英里(1英里合1.6093千米)的兩個地方,開始沿直線相向騎行。在他們起步的那一瞬間,一輛自行車車把上的一隻蒼蠅,開始向另一輛自行車徑直飛去。它一到達另一輛自行車車把,就立即轉嚮往回飛行。這只蒼蠅如此往返,在兩輛自行車的車把之間來回飛行,直到兩輛自行車相遇為止。如果每輛自行車都以每小時1O英里的等速前進,蒼蠅以每小時15英里的等速飛行,那麼,蒼蠅總共飛行了多少英里?

答案
每輛自行車運動的速度是每小時10英里,兩者將在1小時後相遇於2O英里距離的中點。蒼蠅飛行的速度是每小時15英里,因此在1小時中,它總共飛行了15英里。
許多人試圖用復雜的方法求解這道題目。他們計算蒼蠅在兩輛自行車車把之間的第一次路程,然後是返回的路程,依此類推,算出那些越來越短的路程。但這將涉及所謂無窮級數求和,這是非常復雜的高等數學。據說,在一次雞尾酒會上,有人向約翰?馮·諾伊曼(John von Neumann, 1903~1957,20世紀最偉大的數學家之一。)提出這個問題,他思索片刻便給出正確答案。提問者顯得有點沮喪,他解釋說,絕大多數數學家總是忽略能解決這個問題的簡單方法,而去採用無窮級數求和的復雜方法。
馮·諾伊曼臉上露出驚奇的神色。「可是,我用的是無窮級數求和的方法.」他解釋道

2、 有位漁夫,頭戴一頂大草帽,坐在劃艇上在一條河中釣魚。河水的流動速度是每小時3英里,他的劃艇以同樣的速度順流而下。「我得向上游劃行幾英里,」他自言自語道,「這里的魚兒不願上鉤!」
正當他開始向上游劃行的時候,一陣風把他的草帽吹落到船旁的水中。但是,我們這位漁夫並沒有注意到他的草帽丟了,仍然向上游劃行。直到他劃行到船與草帽相距5英里的時候,他才發覺這一點。於是他立即掉轉船頭,向下游劃去,終於追上了他那頂在水中漂流的草帽。
在靜水中,漁夫劃行的速度總是每小時5英里。在他向上游或下游劃行時,一直保持這個速度不變。當然,這並不是他相對於河岸的速度。例如,當他以每小時5英里的速度向上游劃行時,河水將以每小時3英里的速度把他向下游拖去,因此,他相對於河岸的速度僅是每小時2英里;當他向下游劃行時,他的劃行速度與河水的流動速度將共同作用,使得他相對於河岸的速度為每小時8英里。
如果漁夫是在下午2時丟失草帽的,那麼他找回草帽是在什麼時候?

答案
由於河水的流動速度對劃艇和草帽產生同樣的影響,所以在求解這道趣題的時候可以對河水的流動速度完全不予考慮。雖然是河水在流動而河岸保持不動,但是我們可以設想是河水完全靜止而河岸在移動。就我們所關心的劃艇與草帽來說,這種設想和上述情況毫無無差別。
既然漁夫離開草帽後劃行了5英里,那麼,他當然是又向回劃行了5英里,回到草帽那兒。因此,相對於河水來說,他總共劃行了10英里。漁夫相對於河水的劃行速度為每小時5英里,所以他一定是總共花了2小時劃完這10英里。於是,他在下午4時找回了他那頂落水的草帽。
這種情況同計算地球表面上物體的速度和距離的情況相類似。地球雖然旋轉著穿越太空,但是這種運動對它表面上的一切物體產生同樣的效應,因此對於絕大多數速度和距離的問題,地球的這種運動可以完全不予考慮.

3、 一架飛機從A城飛往B城,然後返回A城。在無風的情況下,它整個往返飛行的平均地速(相對於地面的速度)為每小時100英里。假設沿著從A城到B城的方向筆直地刮著一股持續的大風。如果在飛機往返飛行的整個過程中發動機的速度同往常完全一樣,這股風將對飛機往返飛行的平均地速有何影響?
懷特先生論證道:「這股風根本不會影響平均地速。在飛機從A城飛往B城的過程中,大風將加快飛機的速度,但在返回的過程中大風將以相等的數量減緩飛機的速度。」「這似乎言之有理,」布朗先生表示贊同,「但是,假如風速是每小時l00英里。飛機將以每小時200英里的速度從A城飛往B城,但它返回時的速度將是零!飛機根本不能飛回來!」你能解釋這似乎矛盾的現象嗎?

答案
懷特先生說,這股風在一個方向上給飛機速度的增加量等於在另一個方向上給飛機速度的減少量。這是對的。但是,他說這股風對飛機整個往返飛行的平均地速不發生影響,這就錯了。
懷特先生的失誤在於:他沒有考慮飛機分別在這兩種速度下所用的時間。
逆風的回程飛行所用的時間,要比順風的去程飛行所用的時間長得多。其結果是,地速被減緩了的飛行過程要花費更多的時間,因而往返飛行的平均地速要低於無風時的情況。
風越大,平均地速降低得越厲害。當風速等於或超過飛機的速度時,往返飛行的平均地速變為零,因為飛機不能往回飛了。

4、 《孫子算經》是唐初作為「算學」教科書的著名的《算經十書》之一,共三卷,上卷敘述算籌記數的制度和乘除法則,中卷舉例說明籌算分數法和開平方法,都是了解中國古代籌算的重要資料。下卷收集了一些算術難題,「雞兔同籠」問題是其中之一。原題如下: 令有雉(雞)兔同籠,上有三十五頭,下有九十四足。

問雄、兔各幾何?

原書的解法是;設頭數是a,足數是b。則b/2-a是兔數,a-(b/2-a)是雉數。這個解法確實是奇妙的。原書在解這個問題時,很可能是採用了方程的方法。

設x為雉數,y為兔數,則有

x+y=b, 2x+4y=a

解之得

y=b/2-a,

x=a-(b/2-a)

根據這組公式很容易得出原題的答案:兔12隻,雉22隻。

5、我們大家一起來試營一家有80間套房的旅館,看看知識如何轉化為財富。
經調查得知,若我們把每日租金定價為160元,則可客滿;而租金每漲20元,就會失去3位客人。 每間住了人的客房每日所需服務、維修等項支出共計40元。
問題:我們該如何定價才能賺最多的錢?
答案:日租金360元。
雖然比客滿價高出200元,因此失去30位客人,但餘下的50位客人還是能給我們帶來360*50=18000元的收入; 扣除50間房的支出40*50=2000元,每日凈賺16000元。而客滿時凈利潤只有160*80-40*80=9600元。
當然,所謂「經調查得知」的行情實乃本人杜撰,據此入市,風險自擔。

6 數學家維納的年齡,全題如下: 我今年歲數的立方是個四位數,歲數的四次方是個六位數,這兩個數,剛好把十個數字0、1、2、3、4、5、6、7、8、9全都用上了,維納的年齡是多少? 解答:咋一看,這道題很難,其實不然。設維納的年齡是x,首先歲數的立方是四位數,這確定了一個范圍。10的立方是1000,20的立方是8000,21的立方是9261,是四位數;22的立方是10648;所以10=<x<=21 x四次方是個六位數,10的四次方是10000,離六位數差遠啦,15的四次方是50625還不是六位數,17的四次方是83521也不是六位數。18的四次方是104976是六位數。20的四次方是160000;21的四次方是194481; 綜合上述,得18=<x<=21,那隻可能是18,19,20,21四個數中的一個數;因為這兩個數剛好把十個數字0、1、2、3、4、5、6、7、8、9全都用上了,四位數和六位數正好用了十個數字,所以四位數和六位數中沒有重復數字,現在來一一驗證,20的立方是80000,有重復;21的四次方是194481,也有重復;19的四次方是130321;也有重復;18的立方是5832,18的四次方是104976,都沒有重復。 所以,維納的年齡應是18。
把1,2,3,4……1986,1987這1987個自然數均勻排成一個大圓圈,從1開始數:隔過1劃2,3;隔過4劃掉5,6,這樣每隔一個數劃掉兩個數,轉圈劃下去,問:最後剩下哪個數。
答案:663

⑵ 急求10篇關於數學家的故事或數學發展史的讀後感大約400字左右

這些天,閱讀了校長給數學教師推薦的《人民教育》中蔡宏基的《捕捉數學史中的教育基因》一文。剛開始,看到以「字母表示數」為例,正好是我們年級選擇上實驗課的內容,所以粗略瀏覽了導入和體驗部分,覺得我們如果要上這節課,也會如此設計,於是就沒有看下去。想著讀了還要交體會,於是拿起來重新看了一遍,讀到文章的反思和運用部分讓我耳目一新、心為之一震。在多年注重課堂形式多樣之後,這節課卻以純數學的設計,體現了數學本身的魅力。在這節課蘊含了豐富的數學學科知識和深厚的學科素養,還有就是從數學發展史較好的捕捉了教育基因,是數學學習變得豐富有趣。我想,這樣的一節課一定能讓學生感受到數學本身的樂趣,並愛上數學這門學科。

讀完這篇文章,我思緒澎湃,作為數學教師的我,對數學有了一種全新的感受,原來數學是如此之美,數學課也能上得如此精彩!想想之前的我,每當家長詢問為什麼孩子不喜歡學數學時,我一直都很理直氣壯的回答,是因為數學是一門很抽象,枯燥的學科。學完此文,我深感慚愧,產生了這樣的疑問:是數學真的就是枯燥乏味,還是教數學的我們沒有了解數學的樂趣呢?我也在思考著,為什麼在我的數學課中沒能將數學之美傳遞給學生,讓學生被數學的魅力吸引而萌發濃厚的興趣呢?要做到這些,我缺少了什麼?

帶著這些疑問和思考,結合對自己教學的反思,我覺得作為數學教師的我,在教學中,也能從設計中較好的體現數學基礎知識,突破教學重、難點,也能考慮學生的特點,設計有趣的練習幫助學生學習數學。例如:在學習對稱圖形時,我能讓學生在設計圖案時感受圖形變換之美。可是,根本沒能深入從數學的角度去思考、挖掘出數學本質的美並以此去引導學生,由此去探究數學魅力,激起學習的興趣。現如今的小學數學教師,很少有接受過高等數學的教育的,大部分教師還是中師畢業,然後去進修到大專的,有些進修的也不是數學專業,我也是如此。所以以我們的知識和能力,要上出一節如此精彩的數學課,我想我還有很多不足,具體如下:

首先是本人對數學本質美的認識和對數學發展史的了解欠缺。學生之所以不喜歡這門學科,可能是因為他們不了解這門學科,沒有認識到這門學科的美妙之處,如果我們教師能在課堂上時不時的向孩子們講一些數學的歷史,一些數學家的故事,也許真能找到一條培養學生的數學興趣的捷徑。這不禁讓我想起在校本思維訓練課程中的嘗試,正是那一個個的數學故事,讓學生感受到了數學的趣味,才使得孩子們都積極的參與到學習當中。我何不將之帶到數學課堂當中呢?要做好這些,必須先提高自己在這方面的儲備。通過上網收集資料,我將在08閱讀年中,於本學期認真閱讀M·克萊因的《古今數學思想》一書,了解數學的樂趣所在,下學期將閱讀有關數學發展史的書籍,提高對數學學科發展的了解。

第二是對中學數學的教學內容不了解,從而在教學設計中很少思考中小學數學的銜接問題,沒有從的大教學發展觀去設計教學。以前就聽到過中學數學教師埋怨小學數學教師的話,當時很是憤憤不平。可讀了這篇文章後,感到確實如此。要實現小學到中學的順利過渡,我將在今後的閱讀計劃中加入學習初中,甚至高中數學課本的內容,提高數學學科知識的儲備。

第三是滿足現狀,不思進取。之前的我,還很滿足於目前的狀況,所教班級在年級排名不錯,公認的年級差班成績也在不斷提高,達到了中等。在每學期的實驗課中獲得了幾次「十節好課」,感覺真不錯。可讀完文章,我感覺自己要這樣下去,就會跟不上時代脈搏。

感謝校長推薦了這樣一篇好文章,不止是找到自己的不足,更明確了個人發展的方向。最後,引用屈原的「路漫漫兮,其修遠兮,吾將上下而求索」結束。

⑶ 急求數學家的故事 10篇 要短

1.華羅庚勤奮成才
小時候,華羅庚家境貧寒,初中未畢業便輟學在家,輟學之後,他對數學產生了強烈的興趣,而且也懂得用功讀書,他從一本《大代數》,一本《解析幾何》及一本50頁從老師那兒摘抄來的《微積分》開始,勤奮自學,踏上了通往數學大師的路。
華羅庚輟學期間,幫父親打理小店鋪。為了抽出時間學習,他經常早起。隔壁鄰居早起磨豆腐的時候,華羅庚已經點著油燈在看書了。伏天的晚上,他很少到外面去乘涼,而是在蚊子嗡嗡叫的小店裡學習。嚴冬,他常常把硯台放在腳爐上,一邊磨墨一邊用毛筆蘸著墨汁做習題。每逢年節,華羅庚也不去親戚家裡串門,埋頭在家裡讀書。
白天,華羅庚就幫助他的父親在小雜貨店裡幹活與站櫃台。顧客來了,幫助他父親做生意,打算盤,記賬。顧客走了,就又埋頭看書或演算習題。有時入了迷,竟然忘記了接待顧客。時間久了,父親很生氣,乾脆把華羅庚演算的一大堆草稿紙拿來就撕,撕完扔到大街上。有時甚至把他的算草紙往火爐里扔。每逢遇到這種時候,華羅庚總是拚命的抱住他視之如命的算草紙,不讓他的父親燒掉。
華羅庚的志氣與行徑,幾乎沒有人能夠理解。華羅庚和全世界無數的傑出人才一樣,困難愈多,克服困難的決心也愈堅。他克服了常人難以想像的困難與阻力。不斷前進,這倒反而鍛煉了他。沒有時間,養成了他早起,善於利用零碎時間,善於心算的習慣。沒有書,養成了他勤於動手,勤於獨立思考的習慣。這種習慣一直保持到他的晚年。
2.祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人。他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家。
祖沖之在數學上的傑出成就,是關於圓周率的計算。秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率"。後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一。直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長。劉徽計算到圓內接96邊形,求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確。祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間。並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數。祖沖之究竟用什麼方法得出這一結果,現在無從考查。若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的。祖沖之計算得出的密率,外國數學家獲得同樣結果,已是一千多年以後的事了。為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率"。
3.高斯(Gauss 1777~1855)生於Brunswick,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。
高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。
老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。
4.歐拉於 07年出生在瑞士名城巴塞爾。他的爸爸是位神甫,酷愛數學,在爸爸的書房裡,除了不多的神學書之外,滿滿當當的,全是數學書!從小歐拉略略懂事開始,這位熱愛數學的父親,只要有空,就會把兒子抱在大腿上,給他講各種有趣的數學故事。
聰明的小歐拉,當然也特別喜歡聽爸爸講數學故事了。你瞧,爸爸剛下班回家,他就拽住了爸爸的黑袍子,要聽故事。
「好的,」爸爸說,「今天,爸爸給你講個關於象棋的故事。從前,印度有個國王叫舍罕。他的大臣發明了象棋。一天,剛和大臣下了一盤象棋的國王,覺得象棋非常好玩,決定重賞大臣。『國王,』大臣說,『您只要賞賜給我一些麥子就行了。請在棋盤的第一格里放1粒,第二格里放2粒,第三格里放4粒,第四格里放16粒……以此類推,把64格棋盤放滿,就夠了!』『你只要這點賞賜啊,』國王笑得喘不過氣來,立刻派人來放麥子。可是,讓人想不到的是,棋盤的格子還沒放到一半,國庫內的麥子就搬光了。」
小歐拉睜大眼睛,出神地望著爸爸,過了好一會兒才問道:「這,怎麼可能呢?」
爸爸撫摸著小歐拉的頭,說:「孩子,你還不懂,這就是數學上的冪級數。如果把棋盤64格全放滿麥粒的話,這些麥子得有18000億噸。」
「18000億噸,那是多少啊?」小歐拉鬧不明白。
「哦,這樣跟你說吧,假設當時印度全年小麥的生產量是100萬噸的話,要生產這么多的小麥,要用一百八十萬年才行。」
「我的天哪!」小歐拉驚呼起來,「原來,小小的棋盤里,竟然有如此有趣的數學問題!」
這個故事深深震撼了小歐拉的心靈,從此,一顆熱愛數學的種子在小歐拉的心靈深處種下了。
5陳景潤與哥德巴赫猜想 (這是他的主要成就)
陳景潤在福州英華中學讀書時,有幸聆聽了清華大學調來一名很有學問的數學教師講課。他給同學們講了世界上一道數學難題:「大約在200年前,一位名叫哥德巴赫的德國數學家提出了『任何一個偶數均可表示兩個素數之和』,簡稱1+l。他一生沒有證明出來,便給俄國聖彼得堡的數學家歐拉寫信,請他幫助證明這道難題。歐拉接到信後,就著手計算。他費盡了腦筋,直到離開人世,也沒有證明出來。之後,哥德巴赫帶著一生的遺憾也離開了人世,卻留下了這道數學難題。200多年來,這個哥德巴赫猜想之謎吸引了眾多的數學家,但始終沒有結果,成為世界數學界一大懸案」。老師講到這里還打個形象的比喻,自然科學皇後是數學,「哥德巴赫猜想」則是皇後王冠上的明珠!這引人入勝的故事給陳景潤留下了深刻的印象,「哥德巴赫猜想」像磁石一般吸引著陳景潤。從此,陳景潤開始了摘取皇冠上寶石的艱辛歷程......
1953年,陳景潤畢業於廈門大學數學系,曾被留校,當了一名圖書館的資料員,除整理圖書資料外,還擔負著為數學系學生批改作業的工作,盡管時間緊張、工作繁忙,他仍然堅持不懈地鑽研數學科學。陳景潤對數學論有濃厚的興趣,利用一切可以利用的時間系統地閱讀了我國著名數學家華羅庚有關數學的專著。陳景潤為了能直接閱讀外國資料,掌握最新信息,在繼續學習英語的同時,又攻讀了俄語、德語、法語、日語、義大利語和西班牙語。學習這些個國家語言對一個數學家來說已是一個驚人突破了,但對陳景潤來說只是萬里長征邁出的第一步。
為了使自己夢想成真,陳景潤不管是酷暑還是嚴冬,在那不足6平米的斗室里,食不知味,夜不能眠,潛心鑽研,光是計算的草紙就足足裝了幾麻袋。1957年,陳景潤被調到中國科學院研究所工作,做為新的起點,他更加刻苦鑽研。經過10多年的推算,在1965年5月,發表了他的論文《大偶數表示一個素數及一個不超過2個素數的乘積之和》。論文的發表,受到世界數學界和著名數學家的高度重視和稱贊。英國數學家哈伯斯坦和德國數學家黎希特把陳景潤的論文寫進數學書中,稱為「陳氏定理」,可是這個世界數學領域的精英,在日常生活中卻不知商品分類,有的商品名字都叫不出來,被稱為「痴人」和「怪人」。
6.
華羅庚
出生在一個擺雜貨店的家庭,從小體弱多病,但他憑借自己一股堅強的毅力和崇高的追求,終於成為一代數學宗師.
少年時期的華羅庚就特別愛好數學,但數學成績並不突出.19歲那年,一篇出色的文章驚動了當時著名的數學家熊慶來.從此在熊慶來先生的引導下,走上了研究數學的道路.晚年為了國家經濟建設,把純粹數學推廣應用到工農業生產中,為祖國建設事業奮斗終生! 華爺爺悉心栽培年輕一代,讓青年數學家茁壯成兒使他們脫穎而出,工作之餘還不忘給青多年朋友寫一些科普讀物.下面就是華羅庚爺爺曾經介紹給同學們的一個有趣的數學游戲: 有位老師,想辨別他的3個學生誰更聰明.他採用如下的方法:事先准備好3頂白帽子,2頂黑帽子,讓他們看到,然後,叫他們閉上眼睛,分別給戴上帽子,藏起剩下的2頂帽子,最後,叫他們睜開眼,看著別人的帽子,說出自己所戴帽子的顏色.
3個學生互相看了看,都躊躇了一會,並異口同聲地說出自己戴的是白帽子
聰明的小讀者,想想看,他們是怎麼知道帽子顏色的呢?「 為了解決上面的伺題,我們先考慮「2人1頂黑帽,2頂白帽」問題.因為,黑帽只有1頂,我戴了,對方立刻會說自己戴的是白帽.但他躊躇了一會,可見我戴的是白帽.
這樣,「3人2頂黑帽,3頂白帽」的問題也就容易解決了.假設我戴的是黑帽子,則他們2人就變成「2人1頂黑帽,2頂白帽」問題,他們可以立刻回答出來,但他們都躊躇了一會,這就說明,我戴的是白帽子,3人經過同樣的思考,於是,都推出自己戴的是白帽子. 看到這里。同學們可能會拍手稱妙吧.後來,華爺爺還將原來的問題復雜化,「n個人,n-1頂黑帽子,若干(不少於n)頂白帽子」的問題怎樣解決呢?運用同樣的方法,便可迎刃而解.他並告誡我們:復雜的問題要善於「退」,足夠地「退」,「退」到最原始而不失去重要性的地方,是學好數學的一個訣竊.
7. 數學之父—泰勒斯(Thales)
泰勒斯生於公元前624年,是古希臘第一位聞名世界的大數學家。他原是一位很精明的商人,靠賣橄欖油積累了相當財富後,泰勒斯便專心從事科學研究和旅行。他勤奮好學,同時又不迷信古人,勇於探索,勇於創造,積極思考問題。他的家鄉離埃及不太遠,所以他常去埃及旅行。在那裡,泰勒斯認識了古埃及人在幾千年間積累的豐富數學知識。他游歷埃及時,曾用一種巧妙的方法算出了金字塔的高度,使古埃及國王阿美西斯欽羨不已。 泰勒斯的方法既巧妙又簡單:選一個天氣晴朗的日子,在金字塔邊豎立一根小木棍,然後觀察木棍陰影的長度變化,等到陰影長度恰好等於木棍長度時,趕緊測量金字塔影的長度,因為在這一時刻,金字塔的高度也恰好與塔影長度相等。也有人說,泰勒斯是利用棍影與塔影長度的比等於棍高與塔高的比算出金字塔高度的。如果是這樣的話,就要用到三角形對應邊成比例這個數學定理。泰勒斯自誇,說是他把這種方法教給了古埃及人但事實可能正好相反,應該是埃及人早就知道了類似的方法,但他們只滿足於知道怎樣去計算,卻沒有思考為什麼這樣算就能得到正確的答案。
8. 蘇步青
蘇步青1902年9月出生在浙江省平陽縣的一個山村裡。雖然家境清貧,可他父母省吃儉用,拚死拼活也要供他上學。他在讀初中時,對數學並不感興趣,覺得數學太簡單,一學就懂。可量,後來的一堂數學課影響了他一生的道路。
那是蘇步青上初三時,他就讀浙江省六十中來了一位剛從東京留學歸來的教數學課的楊老師。第一堂課楊老師沒有講數學,而是講故事。他說:「當今世界,弱肉強食,世界列強依仗船堅炮利,都想蠶食瓜分中國。中華亡國滅種的危險迫在眉睫,振興科學,發展實業,救亡圖存,在此一舉。『天下興亡,匹夫有責』,在座的每一位同學都有責任。」他旁徵博引,講述了數學在現代科學技術發展中的巨大作用。這堂課的最後一句話是:「為了救亡圖存,必須振興科學。數學是科學的開路先鋒,為了發展科學,必須學好數學。」蘇步青一生不知聽過多少堂課,但這一堂課使他終身難忘。
楊老師的課深深地打動了他,給他的思想注入了新的興奮劑。讀書,不僅為了擺脫個人困境,而是要拯救中國廣大的苦難民眾;讀書,不僅是為了個人找出路,而是為中華民族求新生。當天晚上,蘇步青輾轉反側,徹夜難眠。在楊老師的影響下,蘇步青的興趣從文學轉向了數學,並從此立下了「讀書不忘救國,救國不忘讀書」的座右銘。一迷上數學,不管是酷暑隆冬,霜晨雪夜,蘇步青只知道讀書、思考、解題、演算,4年中演算了上萬道數學習題。現在溫州一中(即當時省立十中)還珍藏著蘇步青一本幾何練習薄,用毛筆書寫,工工整整。中學畢業時,蘇步青門門功課都在90分以上。
9.女數學家王貞儀(1768-1797 ),字德卿,江寧人,是清代學者王錫琛之女,著有《西洋籌算增刪》一卷、《重訂策算證訛》一卷、《象數窺余》四卷、《術算簡存》五卷、《籌算易知》一卷。

從她遺留下來的著作可以看出,她是一位從事天文和籌算研究的女數學家。算籌,又被稱為籌、策、籌策等,有時亦稱為運算元,是一種棒狀的計算工具。一般是竹製或木製的一批同樣長短粗細的小棒,也有用金屬、玉、骨等質料製成的,不用時放在特製的算袋或運算元筒里,使用時在特製的算板、氈或直接在桌上排布。應用「算籌」進行計算的方法叫做「籌算」,算籌傳入日本稱為「算術」。算籌在中國起源甚早,《老子》中有一句「善數者不用籌策」的記述,現在所見的最早記載是《孫子算經》,至明朝籌算漸漸為珠算所取代。

17世紀初葉,英國數學家納皮爾發明了一種算籌計演算法,明末介紹到我國,也稱為「籌算」。清代著名數學家梅文鼎、戴震等人曾加以研究。戴震稱其為「策算」。王貞儀也從事研究由西洋傳入我國的這種籌算,並且寫了三卷書向國人介紹西洋籌算。她在著作中對西洋籌算進行增補講解,使之簡易明了。王貞儀介紹的納皮爾算籌乘除法,當時的讀者認為容易了解,但與當時我國的乘除法籌算的方法相比,顯得較繁雜,因此,數學家們沒有使用西洋籌算,一直使用中國籌演算法。今天的讀者把中外籌算乘除法視為老古董,採用的是由外國傳入的筆算四則運算,這種筆算於1903年才開始被使用,故我國與世界接軌使用筆算的歷史只有100年。
10.高揚芝(1906-1978 ),江西南昌人,從小學習勤奮,特別喜歡數學。

高中畢業後考入北京大學數學系,由於學習成績優秀,1930年大學畢業後應聘到上海大同大學擔任數學教員,後成為教授、數學系主任。在課堂教學中,她遵循《學記》中所說的:「善歌者使人繼其聲,善教者使人繼其志。」所以,高揚芝的數學教學一貫是兢兢業業、講求實效,深受學生歡迎。

高揚芝長期從事數學分析(舊時叫高等微積分)、高等代數和復變函數等課程的教學與研究。她深知,高等數學比初等數學更加抽象,外行人常常把它看成是由冷酷的定義、定理、法則統治著的王國。因此,高教授常常告訴學生,數學結構嚴謹,證明簡潔,蘊含著數學的美。它像一座迷宮,只要你潛心學習、研究,就能尋求到走出迷宮的正確道路。一旦順利走出迷宮,成功的愉悅會使你興奮不已,你會向新的、更復雜的迷宮挑戰,這就是數學的魅力。

她在上海大同大學工作不到五年的時間里,自身潛在的科研天賦很快被喚醒催發。經過刻苦鑽研教材,結合教學實踐,她撰寫出論文《Clebsch氏級數改正》,1935年在交通大學主編的《科學通訊》上連載,得到同行好評。解放後,她又著有《極限淺說》《行列式》等科普讀物多部。

高揚芝是中國數學會創始時的少數女性前輩之一。1935年7月25日中國數學會在上海交通大學圖書館舉行成立大會,共有33人出席,高揚芝就是其中的一位。在這次年會上,她被推選為中國數學會評議會評議,後連任第二、三屆評議會評議。1951年8月,中國數學會在北京大學召開了規模空前的第一次全國代表大會,高揚芝出席了大會。她是這次到會代表63人中惟一的女代表。20世紀60年代,她被選為江蘇省數學會副理事長。

.

⑷ 數學家的小故事 20字 5篇

最低0.27元/天開通網路文庫會員,可在文庫查看完整內容>
原發布者:度米文庫
數學家小故事20字大全【篇一:數學家小故事20字大全】數學家華羅庚小時候的軼事數學家華羅庚小時候的軼事華羅庚(1910——1982)出生於江蘇太湖畔的金壇縣,因出生時被父親華老祥放於籮筐以圖吉利,「進籮避邪,同庚百歲「,故取名羅庚。華羅庚從小便貪玩,也喜歡湊熱鬧,只是功課平平,有時還不及格。勉強上完小學,進了家鄉的金壇中學,但仍貪玩,字又寫得歪歪扭扭,做數學作業時倒時滿認真地畫來畫去,但像塗鴉一般,所以上初中時的華羅庚仍不被老師喜歡的學生而且還常常挨戒尺。金壇中學的一位名叫王維克的教員卻獨有慧眼,他研究了華羅庚塗鴉的本子才發現這許多塗改的地方正反映他解題時探索的多種路子。一次王維克老師給學生講[孫子算經]出了這樣一道題:」今有物不知其數,三三數之剩其二,五五數剩其三,七七數剩其二,問物幾何?「正在大家沉默之際,有個學生站起來,大家一看,原來是向來為人瞧不起的華羅庚,當時他才十四歲,你猜一猜華羅庚他說出是多少?陳景潤:小時候,教授送我一顆明珠20多年前,一篇轟動全中國的報告文學《哥德巴赫猜想》,使得一位數學奇才一夜之間街知巷聞、家喻戶曉。在一定程度上,這個人的事跡甚至還推動了一個尊重科學、尊重知識和尊重人才的偉大時代早日到來。他的名字叫做陳景潤。不善言談,他曾是一個「丑小鴨」。通常,一個先天的聾子目光會特別犀利,一個先天的盲人聽覺會十分敏銳,而一個從小不被人注意、不受人歡迎的「丑小鴨」式的人物,常常

⑸ 10篇有關數學的故事,數學的趣文軼事,或數學家的傳記等,並寫簡短的讀後感100字左右

您可以先「今天,我讀了關於誰。。。。。他的故事讓我。。。
華羅庚出生於江蘇省,從小喜歡數學,而且非常聰明。1930年,19歲的華羅庚到清華大學讀書。華羅庚在清華四年中,在熊慶來教授的指導下,刻苦學習,一連發表了十幾篇論文,後來又被派到英國留學,獲得博士學位。他對數論有很深的研究,得出了著名的華氏定理
記者在一次采訪時問他:「你最大的願望是什麼?」
他不加思索地回答:「工作到最後一天。」他的確為科學辛勞工作的最後一天,實現了自己的諾言
他這種為科學,為世界辛勞,鍥而不舍的精神值得我們學習。」

用上面的開頭寫陳景潤攻克「哥德巴赫猜想」的事 結尾再寫鍥而不舍的精神讓我。。。。

剩下的故事用 高斯的小學數學老師認為在這樣的小山村裡不可能會有什麼天才,因而對於教育並不上心,一天上課,他給學生們布置下了一道計算題,從1加到100,他認為大家肯定會用很長時間去做,這樣自己就可以~~~
物理學家盧瑟福的事 牛頓發現地球引力 阿基米德被殺死的事 歐拉放羊 剩下兩個偶也沒找到。。樓主有找到也告訴我一下

⑹ 十個二十字的數學家的小故事

數學家的十則小故事:

⑺ 10篇有關數學的故事或數學的趣聞軼事或數學家的傳記。100字的讀後感

為何沒有諾貝爾數學獎 眾所周知,數學對人類的重要性並不亞於以上學科,但是為何沒有諾貝爾數學獎呢?諾貝爾不設數學獎的原因,有多種說法:一是諾貝爾幾乎沒有學過數學,也能取得偉大的成就,根本無法預見或想像數學在推動科學發展上所起的作用,因此忽視了設立數學獎;二是在諾貝爾立下遺囑的時候,數學領域已經有了一個很有影響的斯堪的那維亞獎,或許諾貝爾覺得沒有必要再在自己的獎項中設立數學獎;三是諾貝爾與當時著名的數學家米他格·萊夫勒(Mittag Leffler)有過結,因而故意不設數學獎。
現在比較流行的是第三種說法。米他格·萊夫勒是19世紀末20世紀初瑞典著名的數學家,斯德歌爾摩學院院長,在分析學和復變函數論方面有許多經典性的工作。經過他的苦心經營,瑞典有世界上最好的數學研究圖書館,創刊出版第一流的數學雜志《艾克塔數學》,培養和聘請了一批著名學者,其中俄國女數學家瓦列夫斯卡成為世界上第一位女數學教授,使瑞典一時成為世界上數學人才薈萃的地方。萊夫勒的名聲如此之大,如果設立諾貝爾數學獎,他將是第一次獲獎的重要人選。
據說諾貝爾有一個比他小13歲的女友——維也納婦女蘇菲(Sophie Hess),諾貝爾曾向她求婚而她態度曖昧,結果諾貝爾發現她和數學家萊夫勒私下交往甚密,最後還私奔了。女友因為萊夫勒而背叛他,諾貝爾一直耿耿於懷,以致於後來終身未娶。後人猜測,可能是諾貝爾不想讓萊夫勒獲獎,因此在立遺囑時沒有設立數學獎。
加拿大著名數學家菲爾茲(J.C.Fields)曾游學歐洲,與萊夫勒關系十分密切,希望通過自己的努力來與諾貝爾抗衡。1924年菲爾茲在多倫多成功地舉辦了國際數學家會議,並提議用會議結余的經費設立一個數學獎,在他去世前又立下遺囑把自己留下的一大筆錢加到結余經費中去作為獎金。1936年在挪威奧斯陸召開的國際數學家會議上,第一次進行評獎。為了紀念他的貢獻,確定把這個數學獎命名為菲爾茲獎,並被譽稱為數學界的諾貝爾獎。1982年,生於廣東汕頭的普林斯頓高級研究所終身教授丘成桐獲得菲爾茲獎,成為至今獲此殊榮的唯一華人數學家。

⑻ 急求:10篇有關數學的故事或數學的趣聞軼事或數學家的傳記。100字的讀後感

1 16世紀德國數學家魯道夫,花了畢生精力,把圓周率算到小數後位,後人稱之為魯 道夫數,他死後別人便把這個數刻到他的墓碑上。 瑞士數學家雅谷·伯努利,生前對螺線(被譽為生命之線)有研究,他死之後,墓碑上 就刻著一條對數螺線,同時碑文上還寫著:「我雖然改變了,但卻和原來一樣」。這是一句既刻劃螺線性質又象徵他對數學熱愛的雙關語

2 20世紀最傑出的數學家之一的馮·諾依曼.眾所周知,1946年發明的電子計算機,大大促進了科學技術的進步,大大促進了社會生活的進步.鑒於馮·諾依曼在發明電子計算機中所起到關鍵性作用,他被西方人譽為"計算機之父".1911年一1921年,馮·諾依曼在布達佩斯的盧瑟倫中學讀書期間,就嶄露頭角而深受老師的器重.在費克特老師的個別指導下並合作發表了第一篇數學論文,此時馮·諾依曼還不到18歲.

3 伽羅華生於離巴黎不遠的一個小城鎮,父親是學校校長,還當過多年市長。家庭的影響使伽羅華一向勇往直前,無所畏懼。1823年,12歲的伽羅華離開雙親到巴黎求學,他不滿足呆板的課堂灌輸,自己去找最難的數學原著研究,一些老師也給他很大幫助。老師們對他的評價是「只宜在數學的尖端領域里工作」。

4 阿基米德公元前287年出生在義大利半島南端西西里島的敘拉古。父親是位數學家兼天文學家。阿基米德從小有良好的家庭教養,11歲就被送到當時希臘文化中心的亞歷山大城去學習。在這座號稱"智慧之都"的名城裡,阿基米德博閱群書,汲取了許多的知識,並且做了歐幾里得學生埃拉托塞和卡農的門生,鑽研《幾何原本》。

5 俄國詩人萊蒙托夫也是一個數學愛好者。在服兵役時,他出題給軍官做一個數學游戲:
他讓一個軍官先想好一個數,不要告訴別人,然後在這個數上加25,心算好了以後,再加上125,然後再減去37。把算好的結果減去原來想的那個數,結果再乘5並除以2,最後,萊蒙托夫對那個軍官說:答案是282.5。

⑼ 數學家的小故事

陳景潤(1933~1996), 中國數學家、中國科學院院士。

福建閩候人。 陳景潤出生在一個小職員的家庭,上有哥姐、下有弟妹,排行第三。因為家裡孩子多,父親收入微薄,家庭生活非常拮據。因此,陳景潤一出生便似乎成為父母的累贅,一個自認為是不愛歡迎的人。

上學後,由於瘦小體弱,常受人欺負。這種特殊的生活境況,把他塑造成了一個極為內向、不善言談的人,加上對數學的痴戀,更使他養成了獨來獨往、獨自閉門思考的習慣,因此竟被別人認為是一個 「怪人」

。陳景潤畢生後選擇研究數學這條異常艱辛的人生道路,與沈元教授有關。在他那裡,陳景潤第一次知道了哥德巴赫猜想,也就是從那裡,陳景潤第一刻起,他就立志去摘取那顆數學皇冠上的明珠。

1953年,他畢業於廈門大學,留校在圖書館工作,但始終沒有忘記哥德巴赫猜想,他把數學論文寄給華羅庚教授,華羅庚閱後非常賞識他的才華,把他調到中國科學院數學研究所當實習研究員,從此便有幸在華羅庚的指導下,向哥德巴赫猜想進軍。

1966年5月,一顆耀眼的新星閃爍於全球數學界的上空------陳景潤宣布證明了哥德巴赫猜想中的"1+2";1972年2月,他完成了對"1+2"證明的修改。令人難以置信的是,外國數學家在證明"1+3"時用了大型高速計算機,而陳景潤卻完全靠紙、筆和頭顱。如果這令人費解的話,那麼他單為簡化"1+2"這一證明就用去的6麻袋稿紙,則足以說明問題了。

1973年,他發表的著名的"陳氏定理",被譽為篩法的光輝頂點。

對於陳景潤的成就,一位著名的外國數學家曾敬佩和感慨地譽:他移動了群山!

熱點內容
幼師專業怎麼樣 發布:2021-03-16 21:42:13 瀏覽:24
音樂小毛驢故事 發布:2021-03-16 21:40:57 瀏覽:196
昂立中學生教育閘北 發布:2021-03-16 21:40:47 瀏覽:568
建築業一建報考條件 發布:2021-03-16 21:39:53 瀏覽:666
2017年教師資格注冊結果 發布:2021-03-16 21:39:49 瀏覽:642
中國教師資格證查分 發布:2021-03-16 21:39:41 瀏覽:133
踵什麼成語有哪些 發布:2021-03-16 21:38:20 瀏覽:962
東營幼師專業學校 發布:2021-03-16 21:35:26 瀏覽:467
機械電子研究生課程 發布:2021-03-16 21:33:36 瀏覽:875
杭州朝日教育培訓中心怎麼樣 發布:2021-03-16 21:33:28 瀏覽:238