數據分析課程
① 互聯網數據分析課程主講老師是誰
互聯網數據分析主講老師教師是北航特聘副教授。積累了豐富的網路營銷和數據分析基礎。以實戰案例為基礎,連續多年在北航給研究生講授《網路營銷效果分析》課程。
② 想學數據分析,有沒有培訓課程
你好,IT計算機行業一直是比較熱門的行業,想選擇學習一門計算機技術,首回先要找到適合自答己的方向,數據分析就非常不錯的方向。只要努力去學,有足夠的意志力,找一個合適的平台,系統的學習一下,還是會有很大的收獲。
如果你想要專業的學習一下,更多需要的是付出時間和精力,一般在2W左右,4-6個月時間不等。千鋒的課程很不錯,你可以根據自己的實際需求去實地看一下,先好好試聽之後,再選擇適合自己的。只要努力學到真東西,前途自然不會差。
③ 數據分析師需要學哪些課程
數據分析師需要學習以下幾個方面的課程:
(1)數據管理。
a、數據獲取。
企業需求:資料庫訪問、外部數據文件讀入
案例分析:使用產品信息文件演示spss的數據讀入共能。
b、數據管理。
企業需求:對大型數據進行編碼、清理、轉換。
案例分析:使用銀行信用違約信息文件spss相應過程。
1)數據的選擇、合並與拆分、檢查異常值。
2)新變數生成,SPSS函數。
3)使用SPSS變換數據結構——轉置和重組。
4)常用的描述性統計分析功能。頻率過程、描述過程、探索過程。
c、數據探索和報表呈現。
企業需求:對企業級數據進行探索,主要涉及圖形的使用。spss報表輸出。
案例分析:企業績效文件,如何生成美觀清晰的報告。
1)製作報表前對變數的檢查
2)製作報表的中對不同類型的數據處理
3) 報表生成功能與其他選項的區別
(2)數據處理
a、相關與差異分析。
案例分析:產品合格率的相關與差異分析。
b、線性預測。
企業需求: 探索影響企業效率的因素,並進一步預測企業效率。
案例分析:產品合格率的影響因素及其預測分析。
c、因子分析。
企業需求: 需要抽取影響企業效率的主要因素,進行重點投資
案例分析:客戶購買力信息研究。
d、聚類分析。
企業需求: 需要了解購買產品的客戶信息
案例分析:客戶購買力信息研究
e、bootstrap。
案例分析: bootstrap抽樣。
(3)SPSS代碼
SPSS代碼應用
④ 數據分析師要學什麼
數據分析師要學:數學知識、分析工具、編程語言。
1、數學知識
數學知識是數據分析師的基礎知識。對於初級數據分析師,了解一些描述統計相關的基礎內容,有一定的公式計算能力即可,了解常用統計模型演算法則是加分。
對於高級數據分析師,使用分析工具是核心能力,VBA基本必備,SPSS/SAS/R至少要熟練使用其中之一,其他分析工具(如Matlab)視情況而定。
3、編程語言
對於初級數據分析師,會寫SQL查詢,有需要的話寫寫Hadoop和Hive查詢,基本就OK了。對於高級數據分析師,除了SQL以外,學習Python是很有必要的,用來獲取和處理數據都是事半功倍。當然其他編程語言也是可以的。
⑤ bi數據分析做什麼啊 大學里有課程么
bi數據分析,主要是分析大量的數據,從找出有規律的潛在信息。
用途包括:經營分析、財務分析、風險量化、客戶分析等
大學里沒有這門課,但是有bi數據分析應用的基礎課程,包括概率論與數理統計、金融工程
⑥ 如何自學成為數據分析師
數據分析師的基本工作流程:
1.定義問題
確定需要的問題,以及想得出的結論。需要考慮的選項有很多,要根據所在業務去判斷。常見的有:變化趨勢、用戶畫像、影響因素、歷史數據等。
2.數據獲取
數據獲取的方式有很多種:
一是直接從企業資料庫調取,需要SQL技能去完成數據提取等的資料庫管理工作。
二是獲取公開數據,政府、企業、統計局等機構有。
三是通過Python編寫網頁爬蟲。
3.數據預處理
對殘缺、重復等異常數據進行清洗。
4.數據分析與建模
這個部分需要了解基本的統計分析方法、數據挖掘演算法,了解不同統計方法適用的場景和適合的問題。
5.數據可視化和分析報告撰寫
學習一款可視化工具,將數據通過可視化最直觀的展現出來。
數據分析入門需要掌握的技能有:
1. SQL(資料庫):
怎麼從資料庫取數據?怎麼取到自己想要的特定的數據?等這些問題就是你首要考慮的問題,而這些問題都是通過SQL解決的,所以SQL是數據分析的最基礎的技能。
2. excel
分析師更多的時候是在分析數據,分析數據時需要把數據放到一個文件里,就是excel。
熟練excel常用公式,學會做數據透視表,什麼數據畫什麼圖等。
3.Python或者R的基礎:
必備項,也是加分項,在數據挖掘方向是必備項,語言相比較工具更加靈活也更加實用。
4.學習一個可視化工具
如果你想往更高層次發展,上面的東西頂多隻佔20%,剩下的80%則是業務理解能力,目標拆解能力,根據數據需求更多新技能的學習能力。
⑦ 數據分析有哪些相關的培訓課程
據分析師的課程包括兩個層面的內容,只有把數據分析師的這些課程都學會並且運用,你就可以成為一名頂級的大數據分析師。
一、課程層面
第一級別:數據分析課程內容主要是從理論-實操-案例應用步步進階,能讓學員充分掌握概率論和統計理論基礎,能夠熟練運用Excel、SPSS、SAS等一門專業分析軟體,有良好的商業理解能力,能夠根據業務問題指標利用常用數據分析方法進行數據的處理與分析,並得出邏輯清晰的業務報告。
第二級別:在第一級別的基礎上,第二級別包括建模分析師與大數據分析師,即為企業決策提供及時有效、易實現、可信賴的數據支持。建模分析師,指在ZF、金融、電信、零售、互聯網、電商、醫學等行業專門從事數據分析與數據挖掘的人員。本課程針對數據挖掘整套流程,以金融、電信、電商和零售業為案例背景深入講授數據挖掘的主要演算法。並將SAS Enterprise Miner、SPSS Moderler、SAS編程和SQL進行有效的結合,讓學員勝任全方位的數據挖掘運用場景。大數據分析師,本課程以大數據分析為目標,從數據分析基礎、JAVA語言入門和linux操作系統入門知識學起,系統介紹Hadoop、HDFS、MapRece和Hbase等理論知識和hadoop的生態環境,詳細演示hadoop三種模式的安裝配置,以案例的形式,重點講解基於mahout項目的大數據分析之聚類、分類以及主題推薦。通過演示實際的大數據分析案例,使學員能在較短的時間內理解大數據分析的真實價值,掌握如何使用hadoop架構應用於大數據分析過程,使學員能有一個快速提升成為兼有理論和實戰的大數據分析師,從而更好地適應當前互聯網經濟背景下對大數據分析師需求的旺盛的就業形勢。
二、數據分析師的知識結構
⑧ 想從事數據分析的工作,要學習哪個課程呢
大數據分析師需要具備三方面基礎知識,分別是數學、統計學和計算機,所以在本科階段選擇這三個專業未來都可以從事數據分析崗位
大數據在近些年來得到了廣泛的重視,伴隨著物聯網和雲計算的發展,大數據更是被給予了更多的發展空間,而大數據之所以廣受關注,其中一個重要的原因就是大數據開辟出了新的價值領域,這個價值領域的核心就是數據價值化。由於數據會源源不斷,而且數據量會越來越大,所以未來大數據領域將創造出巨大的價值,因此也可以說,在未來的物聯網、智能化時代,誰掌握了數據,誰就掌握了生產材料。
對於企業來說,要想藉助於大數據發展,必須要做好三件事,其一是積極完成數據的採集;其二是具備數據價值化能力;其三是具備應用能力,這三件事分別涉及到物聯網、數據分析和人工智慧。物聯網完成數據採集,數據分析完成數據價值化,而人工智慧則完成數據應用(決策),所以作為數據價值化的核心步驟,數據分析未來具有巨大的發展空間,數據分析的崗位附加值也將得到逐漸的提升。
以上的回答希望對你有所幫助
⑨ 數據分析師需要學習什麼課程
數據分析師需要學習很多的知識,這是毋庸置疑的,但是對數據分析師需要學習的課程不是很了解,一般來說,數據分析師需要學習很多的知識。對於數據分析師所要學習的課程來說需要分為技術學習、統計理論、表達能力三個層面進行學習,這些層面是數據分析的大體內容,只有對這技能進行持續的學習,理解的越透徹,那麼對於數據的分析潛力就越大。下面就給大家詳細解釋一下各個層面需要學習的內容。
首先給大家說明一下數據分析的技術學習,而技術學習有幾個層面的內容要學習。首先,我們需要對資料庫或者其他渠道中獲得數據。很多人對於數據獲取方面還是要靠很多人,在現在對於數據的獲取只能靠自己了,對於數據的獲取是需要sql工具,而sql工具就是為了統計取數而生的工具,而sql工具一般是解決中型數據,Excel可以應對小型數據的分析。當然,還需要學習r語言、Python、spss等數據,這樣才能夠提供數據的挖掘能力。當然還需要學習資料庫的內容,將數據納入資料庫的本領也需要掌握,學好了這些才能夠做好數據分析。
然後給大家說一下關於統計的內容,統計學是數據分析中至關重要的課程,不管是在業務方面發展還是在技術方面發展都需要重視數據分析工作,大家在學習統計方面知識的時候一定要學會裡面的數據分析思維框架,這樣才能夠對日後的數據分析工作有很好的幫助。
最後說一下表達能力,而表達能力也是一項重要的能力,如果你肚子里有很多東西,但是表達不出來,也是不算是一個優秀的數據分析師,擁有一個好的表達能力至關重要,在分析數據以後需要給客戶闡述數據分析的結果,不但有很強的語言表達能力,還要會製作ppt,在講述和製作ppt的時候需要有嚴密的邏輯,這樣才有說服力,在做ppt的時候還需要對語言進行組織,力爭做到圖文並茂,這樣才能夠讓人信服你的數據分析結果。
以上的內容就是小編為大家解答的數據分析師需要學習的內容了,如果大家想走進數據分析這一行業的時候一定提前了解好這些內容,這樣有利於自己設計學習計劃,從而高效的學習知識。最後感謝大家的閱讀。
⑩ 數據分析師需要學習什麼
大家都知道,現在有很多人想成為數據分析師,數據分析師需要學習很多的知識,這是毋庸置疑的,但是對數據分析師需要學習的課程不是很了解,一般來說,數據分析師需要學習很多的知識。對於數據分析師所要學習的課程來說需要分為技術學習、統計理論、表達能力三個層面進行學習,這些層面是數據分析的大體內容,在這篇文章中我們就從這三個層面進行分析,並且講解每個層面需要學習的技能。
數據分析的技術學習涉及到了很多的工作內容。首先,我們需要對資料庫或者其他渠道中獲得數據。很多人對於數據獲取方面還是要靠很多人,在現在對於數據的獲取只能靠自己了,對於數據的獲取是需要sql工具,而sql工具就是為了統計取數而生的工具,而sql工具一般是解決中型數據,Excel可以應對小型數據的分析。當然,還需要學習r語言、Python、spss等數據,這樣才能夠提供數據的挖掘能力。當然還需要學習資料庫的內容,將數據納入資料庫的本領也需要掌握,學好了這些才能夠做好數據分析。所以說,我們一定要重視起來對數據分析工具的使用。
而統計也是數據分析中最重要的工作,統計學是數據分析中至關重要的課程,不管是在業務方面發展還是在技術方面發展都需要重視數據分析工作,大家在學習統計方面知識的時候一定要學會裡面的數據分析思維框架,這樣才能夠對日後的數據分析工作有很好的幫助。
最後我們說一下表達能力,其實不管表達能力在哪個工作中都是一個重要的技能,如果你肚子里有很多東西,但是表達不出來,也是不算是一個優秀的數據分析師,所以說,一個數據分析師一定要做到胸有成竹,這樣就能夠讓別人輕松的理解你的想法。擁有一個好的表達能力至關重要,在分析數據以後需要給客戶闡述數據分析的結果,不但有很強的語言表達能力,還要會製作ppt,在講述和製作ppt的時候需要有嚴密的邏輯,這樣才有說服力,在做ppt的時候還需要對語言進行組織,力爭做到圖文並茂,這樣才能夠讓人信服你的數據分析結果。
關於數據分析師需要學習的內容我們就給大家介紹到這里了,如果大家想走進數據分析這一行業的時候一定提前了解好這些內容,這樣有利於自己設計學習計劃,從而高效的學習知識。當然,大家要想了解更多有關數據分析的相關情況,請持續關注我們吧。