工数课程描述
『壹』 翻译课程描述--高等数学
Chapter V will be integral
This chapter introces the basic concepts of definite integral, nature, given the basic formula of calculus, and introced for the definite integral element method and integration method
12 hours
Chapter VI Application of definite integral
This chapter focused on the definite integral using the theory to analyze and solve some of the geometric and physical problems as a common method - element method, and by this method are given definite integral in geometry, physics common conclusions on the issue of
10 hours
Chapter VII of the analytic geometry of space
And vector algebra, introced in this chapter the main vector, the number of the plot, vector plot, surface, space music
Line, plane, space related to the concept of a straight line and computing
18 hours
『贰』 高等数学课程描述怎么写
你转学分吧。这个最好还是找有经验英文又过硬的人来写。我当时找的是夫子团队。
『叁』 工程数学指哪几门课程,哪位给讲讲啊
常微分方程式(O.D.E.)
微分方程式绪论
一阶常微分方程式
分离变数法
齐次方程式
正合方程式
合并积分法
一阶线性常微分方程式
白努力微分方程式与李卡迪微分方程式
参数变更法
高次非线性O.D.E.之奇解与通解
解之存在性与唯一性
皮卡迭代法
二(高)阶常系数线性微分方程式
线性独立与Wronskian行列式
二(高)阶常系数线性微分方程式
二(高)阶变系数线性微分方程式
柯西等维方程式
观察齐性解(参数变更法)
高阶正合方程式
因变数变更(参数变更)
自变数变更
非线性微分方程式
联立线性O.D.E.
常微分方程式之级数解
基本定义
O.D.E.之幂级数解法『泰勒级数』
O.D.E.之Forbenius级数解法
特殊定义之函数
『微积分第一定理』与『莱布尼兹法则』
Unit Step Function
Delta Function
Beta Function
拉卜拉斯变换(Laplace Transform)
拉卜拉斯变换与其逆转换
基本运算定理
周期函数之拉
卜拉斯变换
以Laplace transform解O.D.E.
以Laplace transform解联立O.D.E.
以Laplace transform解无界限且边界条件与距离无关之O.D.E.
以Laplace transform解积分方程式
Bessel 与 Legendre 函数
Bessel方程式与Bessel函数
Bessel O.D.E.之推广型O.D.E.
Bessel函数之性质
Legendre方程式
Legendre多项式(函数)之性质
Sturm-Liouville 边界值问题
基础观念
Reqular(规则型)Sturm-Liouville
B.V.P. Periodic(周期型)Sturm-Liouville
B.V.P. 函数的内积与正交性
史特姆-李维尔定理(Sturm-Liouville theorem)
广义之Fourier级数
傅立叶级数与积分
傅立叶级数
奇、偶函数之傅立叶级数
半幅展开与全幅展开 复数型之傅立叶级数
傅立叶积分与傅立叶转换
Fourier变换之基本性质
以Fourier分析解微分方程式
--------------------------------------------------------------------------------
GO TO TOP
偏微分方程式(P.D.E.)
P.D.E(I)卡氏座标之热传与波动偏微分方程式
基础观念
规则型齐性P.D.E.之分离变数法
非齐性P.D.E.之暂态、稳态解
非齐性但仅P.D.E.与时间有关
非齐性但全与时间有关
无界域齐性P.D.E.
P.D.E(II)卡氏座标之Laplace方程式
齐性规则P.D.E.
齐性无穷型P.D.E.
非齐性Laplace P.D.E.0
P.D.E.(III)极座标、圆柱座标与球座标
极座标之Laplace P.D.E.
极座标之热传导 P.D.E.与波动
P.D.E. 圆柱座标之Laplace
P.D.E. 球座标之Laplace P.D.E.
P.D.E.(IV)一阶Lagrange方程组与二阶偏微分方程式
一阶Lagrange方程组
常系数P.D.E.
D'Alembert波动方程式解
线性二阶P.D.E.之分类与解法
变数结合法
--------------------------------------------------------------------------------
GO TO TOP
向量分析
向量之基本运算
向量代数
向量之微积分
曲线之微分及弧长(arc length)
多变函数之微分
方向导数与梯度
向量几何(the Geometry of Vector)
向量积分
重积分
线积分与Green定理
曲面积分
散度、旋度与运算子
高斯散度定理(Gauss Divergence Theorem)
Stock定理
Green恒等式(Green's Indentity)
--------------------------------------------------------------------------------
GO TO TOP
复变分析
复变与复变函数
复数
复数平面与极座标
复变函数
多变函数之分支点与分支切割
复数之极限与微分
极限
微分与解析
Cauchy-Riemann方程式
复数积分
复数积分
Cauchy积分定理
Cauchy积分公式
复数级数
复数级数
幂级数与Taylor级数
Laurent级数
孤立奇点之种类
留数定理
留数(resie)
留数定理(resie theorem)
无穷远处之留数
三角函数定积分
有理函数瑕积分
Fourier积分(变换)
多值函数瑕积分
特殊路径之取法
保角映射
映射(mapping)
保角映射(conformal mapping)
双线性转换
--------------------------------------------------------------------------------
GO TO TOP
线性代数
矩阵与线性联立方程式
矩阵与基本运算
方阵与方阵函数
线性联立方程式与Gauss消去法
逆矩阵与Gauss消去法
Gauss 消去法与基本矩阵
行列式
行列式
分割矩阵之行列式
伴随矩阵与余因子
克拉马法则
基底与维度
线性独立与线性相依
矩阵的秩
线性联立方程式与基的关系
特徵值问题
预备知识
特徵值与特徵向量
方阵函数f(A)之特徵值与特徵向量
特徵值之四则运算
Cayley-Hamilton定理及其应用
对角化理论及其应用
矩阵的相似性
矩阵之对角化
代数重数、几何重数与可对角化的条件
对角化理论之应用
解线性常系数联立微分方程式
乔登正则式
正交、正规矩阵与二次的应用
矩阵之内积与Gram-Schmidt正交化法
正交矩阵与正交对角化
么正对角化与正规矩阵集
正交矩阵在二次式之应用
--------------------------------------------------------------------------------
GO TO TOP
微积分
极限与连续
极限
三角函数之极限
高斯函数之极限
连续
与『连续』有关之定理
渐近线
微分
导数 (the Derivative)
特殊点的微分
基础可微函数与微分基本性质
隐函数微分法 (Implicit Differentiation)
反函数微分
指数函数与对数函数之微分
双曲线三角函数
高阶导函数
微分的应用
罗必达法则(L`Hospital Rule)
微分定理
增减、凹凸与极值
微分在作图上的应用
近似值与牛顿近似根去
积分的方法
套用公式法
第一类有理函数(分母仅含一次因式)
变数变换
积分之连锁律
第二类有理函数(分母含二次因式)
分部积分法 (Part Integral)
三角函数积分法
无理函数三角代换法
半角代换法
积分方法总复习练习题
定积分
黎曼和与积分型极限
定积分
特殊的三角函数积分
积分基本定理
瑕积分 (Improper Integral)
Gamma函数与Beta函数
积分之应用
面积
弧长 (arc length)
平面之形心(centroid)、重心
体积(volume)
旋转体之表面积
重积分
二重积分
二重积分之Dirichlet积分变换
重积分之座标变换
极座标之重积分
三重积分
质心、重心
非旋转体之曲面表面积
数列与级数
数列(sequence)
级数 (series)
正项级数之敛散性
交错级数 (Alternating Series)
幂级数之收敛区域
泰勒定理与泰勒级数
泰勒级数在『高阶导数』上的应用
泰勒级数在积分上的应用
向量
向量之基本运算
方向导数与梯度
向量几何(the Geometry of Vector)
向量积分(作功)与Green定理
散度定理与Stoke定理
多变函数
多变函数之极限与连续
偏导数 (partial derivative)
多变函数之极值
微分方程式
一阶分离变数法
一阶线性常微分方程式
二(高)阶常系数O.D.E.之齐性解
二(高)阶常系数O.D.E.之特解
尤拉-柯西等维方程式(Euler-Cauchy equation)
--------------------------------------------------------------------------------
GO TO TOP
电机线代
几何向量空间(R2与R3空间)
题型一:点积(内积)与投影量
题型二:叉积(外积)与面积
题型三:纯量三重积与体积
题型四:空间上的直线与平面
矩阵与线性联立方程式
矩阵与矩阵的基本运算
方阵与方阵的代数
线性联立方程式与Gauss消去法
逆矩阵与Gauss消去法
Gauss消去法与基本矩阵(elementary matrix)
方阵之LU分解
行列式
行列式
分割矩阵之行列式
伴随矩阵(adjoint)与余因子(cofactor)
克拉马法则(Cramer Rule)
向量空间
欧几里德空间
向量空间
子空间与生成空间
和空间与直和空间
基底与维度
线性独立与线性相依
基底与维度
矩阵的秩
线性联立方程式与基底的关系
线性映射
线性映射
线性映射之像集与核空间
线性映射的合成与逆映射
同构空间上矩阵的秩
座标变换与换底公式
特徵值问题
特徵值与特徵向量
题型一:2 2型
题型二:3 3且特徵值无重根型
题型三:3 3且特徵值有重根型
方阵函数 之特徵值与特徵向量
特徵值之四则运算
Cayley-Hamilton定理及其应用
最小(最低)多项式
特徵空间
对角化理论及其应用
矩阵的相似性
矩阵之对角化
代数重数、几何重数与可对角化的条件
对角化理论之应用
题型一:求方阵多项式
题型二:求方阵函数
题型三:解矩阵方程式
题型四:解矩阵的递回式与极限
解线性常系数联立微分方程式
题型一:一阶齐性 =Ax
题型二:二阶齐性 =Ax
题型三:非齐性 =Ax+G
乔登正则式
题型一:直接求Jordan form
题型二:求方阵多项式
题型三:求方阵函数
题型四:解线性常系数联立微分方程式
内积空间
内积空间的定义
矩阵之内积与Gram-Schmidt正交化法
方阵之QR分解
正交投影
正交补集
正规、正交运算子与正规、正交矩阵
伴随运算子(adjoint operator)
正规运算子与自伴随运算子
正规矩阵集
正交运算子与么正运算子
正交对角化与么正对角化
矩阵的范数(norm)
Householder转换
光谱分解与奇异值分解
二次式及其应用
二次式与矩阵的正定、半正定特性
二次式的应用(I):主轴定理与重积分
二次式的应用(II):Rayleigh原理与二次式的极值
--------------------------------------------------------------------------------
GO TO TOP
电机机率
排列组合
排列
组合
机率导论
古典机率论
集合论
机率空间
机率基本定理
条件机率与独立事件
条件机率与贝氏定理(Bayes theorem)
随机变数与机率分配
随机变数
机率分配
期望值与变异数
联合机率分配函数
随机变数之函数与转换
动差与动差不等式
期望值与动差
动差与动差生成函数
马可夫不等式与柴比雪夫不等式
离散机率模型
均匀分配
白努力(Bernoulli)分配
二项分配
超几何分配
多项分配
几何分配
负二项分配
卜瓦松(Poisson)分配
连续机率模型
均匀分配
常态分配
指数分配
Gamma分配
就这是这些捏.
『肆』 小学数学阶段课程目标是怎样描述的
一、总体目标
通过义务教育阶段的数学学习,学生能够
● 获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能;
●初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;
●体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;
●具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展.
具体阐述如下:
知识与技能
●经历将一些实际问题抽象为数与代数问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题.
●经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,并能解决简单的问题.
●经历提出问题、收集和处理数据、作出决策和预测的过程,掌握统计与概率的基础知识和基本技能,并能解决简单的问题.
数学思考
●经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维.
●丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维.
●经历运用数据描述信息、作出推断的过程、发展统计观念.
●经历观察、实验、猜想.证明等数学活动过程,发展合情推理能力和初
步的演绎推理能力、能有条理地、清晰地阐述自己的观点.
解决问题
●初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识和技能解决问题,发展应用意识.
●形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.
●学会与人合作,并能与他人交流思维的过程和结果.
●初步形成评价与反思的意识.
情感与态度
●能积极参与数学学习活动,对数学有好奇心与求知欲.
●在数学学习活动中获得成功的体验.锻炼克服困难的意志,建立自信 心.
●初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
●形成实事求是的态度以及进行质疑和独立思考的习惯.
以上四个方面的目标是一个密切联系的有机整体,对人的发展具有十分重要的作用,它们是在丰富多彩的数学活动中实现的.其中,数学思考、解决问题、情感与态度的发展离不开知识与技能的学习,同时,知识与技能的学习必须以有利于其他目标的实现为前提.
二、学段目标
第一学段(1~3年级) 第二学段(4~6年级) 第三学段(7~9年级)
知识与技能
●经历从日常生活中抽象出数的过程,认识万以内的数、小数、简单给分数和常见的量;了解四则运算的意义,掌握必要的运算(包括估算)技能.
●经历直观认识简单几何体和平面图形的过程,了解简单几何体和平面图形,感受平移、旋转、对称现象,能初步描述物体的相对位置、获得初步的测量(包括估测)、识图、作图等技能.
●对数据的收集、整理、描述和分析过程有所体验、掌握一些简单的数据处理技能;初步感受不确定现象.
●经历从现实生活中抽 象出数及简单数量关系的过程,认识亿以内的数,了解分数、百分数、负数的意义.掌握必要的运算(包括估算)技能;探索给定事物中隐含 的规律,会用方程表示简单的数量关系,会解简单的方程.
●经历探索物体与图形的形状、大小、运动和位置关系的过程,了解简单几何体和平面图形的基本特征,能对简单图形进行变换,能初步确定物体的位置,发展测量(包括估测)、识图、作图等技能.
●经历收集、整理、描 述和分析数据的过程,掌握一些数据处理技能;体验事件发生的等可能性、游戏规则的公平性,能计算一些简单事件发生的可能性.
●经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函数;掌握必要的运算(包括 估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函 数等进行描述.
●经历探索物体与图形基本性质、变换、位置关系的过程,掌握三角形、四边形、圆的基本性质以及平移、旋转、轴对称、相似等的基本 性质,初步认识投影与 视图、掌握基本的识图、作图等技能;体会证明的必要性、能证明三角形和四边形的基本性质,掌握基本的推理技能.
●从事收集、描述、分析 数据,作出判断并进行 交流的活动,感受抽样的必要性,体会用样本估计总体的思想,掌握必要的数据处理技能;进一步丰富对概率的认识,知道频率与概率的关系,会计算一些事件发生的概率.
数学思考
●能运用生活经验,对有关的数字信息作出解释,并初步学会用具体的数描述现实世界中的简 单现象.
●在对简单物体和图形的形状、大小、位置关系、运动的探索过程中,发展空间观念.
●在教师的帮助下,初步学会选择有用信息进行简单的归纳与类比.
●在解决问题过程中,能进行简单的、有条理的思考.
●能对现实生活中有关的数字信息作出合理的解释,会用数、字母和图表描述并解决现实世界中的简单问题.
●在探索物体的位置关系、图形的特征、图形的变换以及设计图案的过程中,进一步发展空间观念.
●能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力.
●在解决问题过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明.
●能对具体情境中较大的数字信息作出合理的解释和推断,能用代数式、方程、不等式、函数刻画事物间的相互关系.
●在探索图形的性质、图形的变换以及平面图形与空间几何体的相互转换等活动过程中,初步建立空间观念,发展几何直觉.
●能收集、选择、处理数学信息、并作出合理的推断或大胆的猜测.
●能用实例对一些数学猜想作出检验,从而增加猜想的可信程度或推翻猜想.
●体会证明的必要性.发展初步的演绎推理能力.
解决问题
●能在教师指导下,从日常生活中发现并提出简单的数学问题.
●了解同一问题可以有不同的解决办法.
●有与同伴合作解决问题的体验.
●初步学会表达解决问题的大致过程和结果.
●能从现实生活中发现并提出简单的数学问题.
●能探索出解决问题的有效方法、并试图寻找其他方法.
●能借助计算器解决问题.
●在解决问题的活动中,初步学会与他人合作.
●能表达解决问题的过程,并尝试解释所得的结果.
●具有回顾与分析解决问题过程的意识.
●能结合具体情境发现并提出数学问题.
●尝试从不同角度寻求解决问题的方法并能有效地解决问题,尝试评价不同方法之间的差异.
●体会在解决问题的过程中与他人合作的重要性.
●能用文字、字母或图表等清楚地表达解决问题的过程,并解释结果的合理性.
●通过对解决问题过程的反思,获得解决问题的经验.
情感与态度
●在他人的鼓励与帮助下,对身边与数学有关的某些事物有好奇心,能够积极参与生动、直观的数学活动.
●在他人的鼓励与帮助下,能克服在数学活动中遇到的某些困难,获得成功的体验,有学好数学的信心.
●了解可以用数和形来描述某些现象,感受数学与日常生活的密切联系.
●经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性.
●在他人的指导下,能够发现数学活动中的错误并及时改正.
●对周围环境中与数学有关的某些事物具有好奇心,能够主动参与教师组织的数学活动. ●在他人的鼓励与引导下,能积极地克服数学活动中遇到的困难,有克服困难和运用知识解决问题的成功体验,对自己得到的结果正确与否有一定的把握,相信自己在学习中可以取得不断的进步.
●体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流.
●通过观察、操作、归纳、类比、推断等数学活动,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性.
●对不懂的地方或不同的观点有提出疑问的意识、并愿意对数学问题进行讨论,发现错误能及时改正.
●乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用.
●敢于面对数学活动中的困难,并有独立克服困 难和运用知识解决问题的成功体验,有学好数学的自信心.
●体验数、符号和图形是 有效地描述现实世界的重要手段、认识到数学是解决实际问题和进行 交流的重要工具,了解数学对促进社会进步和 发展人类理性精神的作用.
●认识通过观察、实验、归纳、类比、推断可以获得数学猜想体验数学活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨 性以及结论的确定性.
●在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他 人的见解;能从交流中获益.
地区不一样要求也不尽然,不过可以参考,希望对你有帮助.
『伍』 课程描述翻译。请大家帮忙。很多专业名词不会啊……
ok my dear, the best way to translate the course describtion or course outlines is: go to the websites of universities in AUS. then seatch "course outline" in that site, or go to the link of "department"directly. then find your course, copy what they said and reunit them,then you could transfer your credits as much as possiale.
please do not try to translate them from chinese, that is not the right way as we thought.most of the transfer students will not do it in your way.beacause foreigners have their methods about what a course should inclide. so do it in their way.
best wishes.
『陆』 翻译概率论与数理统计的课程描述
The Probability Theory and the Mathematical statistics which give both the inctive and dective views on the random phenomena are the basic mathematical science. They aim to explore the regular rules underpinning the random events; and can be divided into two branches which are the probability theory and the mathematical statistics.
The Probability Theory is employed to calculate the possibility of an occurring event; It mainly explains the classic probability model, the distribution of random variables and the central limit theorem.
The mathematical statistics is one of the most practised mathematical methods, and it introces a number of estimation methods such as the method of moments ( the moments estimation and the most likelihood estimation); non parameter and parameter tests, the analysis of variances; the multiple regression analysis, the reliable analysis and so like statistical knowledge.
After this class, students are able to understand and manipulate methods and ideology which are demonstrated through the probability theory and the mathematical statistics, and finally to integrate their scientific knowledge into economic and managerial practices.
『柒』 概率论与数理统计的课程描述
概率论与数理统计是数学的一个有特色且又十分活跃的分支,一方面,它有别开生面版的研究课题,有自己权独特的概念和方法,内容丰富,结果深刻;另一方面,它与其他学科又有紧密的联系,是近代数学的重要组成部分。由于它近年来突飞猛进的发展与应用的广泛性,目前已发展成为一门独立的一级学科。概率论与数理统计的理论与方法已广泛应用于工业、农业、军事和科学技术中,如预测和滤波应用于空间技术和自动控制,时间序列分析应用于石油勘测和经济管理,马尔科夫过程与点过程统计分析应用于地震预测等,同时他又向基础学科、工科学科渗透,与其他学科相结合发展成为边缘学科,这是概率论与数理统计发展的一个新趋势。 (孔繁亮)
『捌』 能不能找到这几门大学课程的课程描述
高等数学(也称为微积分)是理、工科院校一门重要的基础学科。作为一门科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性是数学最基本、最显著的特点--有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程.
高等数学分为几个部分为:
一、函数 极限 连续
二、一元函数微分学
三、一元函数积分学
四、向量代数与空间解析几何
五、多元函数微分学
六、多元函数积分学
七、无穷级数
八、常微分方程
管理学是系统研究管理活动的基本规律和一般方法的科学。管理学是适应现代社会化大生产的需要产生的,它的目的是:研究在现有的条件下,如何通过合理的组织和配置人、财、物等因素,提高生产力的水平。管理学是一门综合性的交叉学科。
线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素.
线性规划问题的数学模型的一般形式
(1)列出约束条件及目标函数
(2)画出约束条件所表示的可行域
(3)在可行域内求目标函数的最优解
计算机是一门包含各种各样与计算和信息处理相关主题的系统学科,从抽象的算法分析、形式化语法等等,到更具体的主题如编程语言、程序设计、软件和硬件等。作为一门学科,它与数学、计算机程序设计、软件工程和计算机工程有显著的不同,却通常被混淆,尽管这些学科之间存在不同程度的交叉和覆盖。
『玖』 老师,意大利米兰理工所要求的课程描述到底要怎么写呢
你的大学的网页上肯定有课程的简介,就抄一下那个,写一下课程的具体内容大纲就行
『拾』 工学研究生课程数学要学些什么
工科,这个范围好大。就拿自身来说吧。工科,本科学的是桥隧专业,研究生内学的是容材料专业,主要是研究道路材料。
数学知识,都是些基本的,高数,线性代数,数理统计,数值分析,概率论,结构有限元。
再如计算机专业的,就比较侧重数学,除了高等数学、数学分析和高等代数、线性代数等基础课程,最实用的是组合数学。不仅在算法上的应用比较多,而且对思考问题的方式很有帮助。
顺便列下本科学过的数学课:
高等数学 线性代数 离散数学 初等数论 组合数学 概率统计
选修课还有随机过程等。
(10)工数课程描述扩展阅读:
工程硕士与工学硕士入学考试的难易标准视各个学校而定。
脱产学习的工程硕士考试时间与工学硕士相同,在职学习的10月考试 .
工程硕士属于国家专业学位教育,它本身也是正规的研究生教育的一种,一般为在职教育,每年10月入学考试;与工学硕士(每年1月入学考试,一般为全日制在校读书)相比,工程硕士主要倾向于技术创新能力的培养,在读期间档案、户口关系原则上不调进学院,不享受国家每个月的研究生补助,毕业之后得到的是一个正规的硕士学位证书,享受国家给予研究生的待遇,出国留学或继续考博均可以。