五年级上册奥数培训
㈠ 五年级上册奥数计算题及答案,在线等。
1. 765×213÷27+765×327÷27
2.(9999+9997+…+9001)-(1+3+…+999)
3.19981999×19991998-19981998×19991999
1. 765×213÷27+765×327÷27
解:原式=765÷27×(213+327)= 765÷27×540=765×20=15300
2. (9999+9997+…+9001)-(1+3+…+999)
解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)
=9000+9000+…….+9000 (500个9000)
=4500000
3.19981999×19991998-19981998×19991999
解:(19981998+1)×19991998-19981998×19991999
=19981998×19991998-19981998×19991999+19991998
=19991998-19981998
=10000
4计算:20×20-19×19+18×18-17×17+…+2×2-1×1
答案:
原式=(20+19)(20-19)+(18+17)(18-17)+…+(2+1)(2-1)
=20+19+18+17+…+2+1
=210
5计算1994.5×79+0.24×790+7.9×31
解答:原式=1994.5×79+2.4×79+79×3.1
=(1994.5+2.4+3.1)×79
=2000×79
=158000
6计算:38765432-3876542×3876544
解答:本题一看好大的数字,肯定有绝招,我们发现
3876542=3876543-1
3876544=3876543+1
原式=38765432-(3876543-1)×(3876543+1)
=38765432-(38765432-1)
=1
7计算2010×2009-2009×2008+2008×2007-2007×2006+…+2×1
解答:原式=2009×(2010-2008)+2007×(2008-2006)+…+3×(4-2)+2×1
=(2009+2007+…+3+1)×2
=1010025×2
=2020050
一、轻松填一填:
1.1~20的自然数中,奇数有个,偶数有个,质数有个,合数有个。
2.327至少加上,才是2的倍数,至少减去,才是5的倍数。
3.在15、18、20、30、45这五个数中,是3的倍数是。有因数
5的数是,既是3的倍数,又是5的倍数有。
4.在三位数4□2的“ □ ”中分别填上、、和后组成的数、都是3的倍数。
5.两个完全一样的三角形,拼成一个面积是8.2平方厘米的平行四边形,其中一个三角形的面积是平方厘米。
6.一个平行四边形面积是38平方厘米,底是9.5厘米,高是。
7.把3吨煤平均分成3堆,每堆煤重吨,每堆煤是3吨煤的。
8.3/4的分数单位是,再加上个这样的单位就是最小的质数。
9.3620平方厘米=()平方分米=()平方米
0.15公顷=()平方米500米=()千米
10.自然数a和b,当a()b时,b/a是真分数,当a()b时,b/a是假分数,当a()b时,b/a=1。
11、一个数的倍数的个数是,其中最小的是。
二、判断。
1.三角形的面积等于平行四边形面积的一半。
2.两个连续奇数的积一定是合数。
3.一个数的倍数总比这个数的因数大。
4.5是因数,15是倍数。
5.在献爱心活动中,笑笑捐了自己零花钱的1/5,淘气捐了自己零花钱的3/5, 淘气捐的钱比笑笑多。
6、假分数都比1大。
三、选择。
1.既是2的倍数,又是5的倍数的最大三位数是
A、999 B、995 C、990 D、950
2.一个质数
A、没有因数B、只有一个因数 C、只有2个因数 D、有3个因数
3.下面各组数中,三个连续自然数都是合数的是
A、14、15、16 B、7、8、9 C、13、15、16
4.分数的分母与除法算式中的除数
A、可以是任何数B、不能是0C、可以是0
5.一个梯形的上底、下底都不变,高扩大为原来的2倍,它的面积
A、不变 B、扩大为原来的2倍C、缩小为原来的4倍
四、计算。
1、直接写出得数。
4.1×0.5=7.6×2.5×4= 2.88÷0.4=
1.35÷5= 7a-0.2a+a=2.5-1.37=
2、解方程。
2X+3X=50 m-0.85m=3
7(X-1)=6.3 3X+7X+2.6=74
五、生活中的数学。
1、五(2)班学生在为灾区献爱心活动中捐书129本,其中男生捐书78本,剩下的是女生捐的。男生捐书的本数占全班捐书总数的几分之几?女生捐书的本数占全班捐书总数的几分之几?
2、甲、乙两地相距460千米,客车与货车同时从甲、乙两地出发,相向而行,客车每小时行60千米,货车每小时行55千米。
(1)经过多久两车可能相遇?(用方程解)
(2)相遇时客车比货车多行多少千米?
3、小明家的菜地是梯形的,上底是6米,下底是10米,高12米,如果每平方米收西红柿7千克,这块菜地可以收西红柿多少千克?
4、一批零件平均分给3个,5个,7个师傅做都剩1个,这批零件在100—110个之间。请问这批零件有多少个?
5、甲5小时行24千米,乙7小时行32千米。他们两人谁的速度快?
6、同学们去游览自然风景区,门票如下:学生票每人30元,成人票每人60人,团体20人以上(含20人)每人40元;有40名学生和5位教师。
怎样购票最省钱,共需多少元?
一、每空1分,共28分。
1、10,10,8,11; 2、1,7; 3、15,18,30,45;
15,20,30,45;15,30,45; 4、0,3,6,9;
5、4.1平方厘米;6、4厘米; 7、1,1/3;
8、1/4,5;9、36.2,0.362,1500,0.5;10、>,<,=;
11、有限的,它本身;
二、判断:每题2分,共12分。
1、 ×2、√ 3、×4× 5、× 6、×
三、每题2分,共10分。
1、 C 2、C 3、 A4、 B 5、 B
四、计算:共18分
1、每题1分,共6分。
2.05;76;7.2;0.27;7.8a;1.13;;
3、每题3分,共12分。
X=10;X= 20 ; X=1.9;X=4.8
六、生活中的数学:1、3、4、5、6每题6分,2题7分;共26分。
1、26/43,17/43; 2、4小时,20千米;3、672千克; 4、106个;
5、甲的速度快
6、买40张学生票,5张成人票;共1500元
㈡ 奥数五年级上册40道
1.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块。两人原来各有多少钱?书多少钱?
设丽丽有x元钱 家家有y元钱 得出:
3/5x=2/3y
2/5x=1/3y+5 (丽丽剩下2/5 家家剩下1/3)
解2元一次方程得x=50 y=45 即丽丽50元 家家45元 书30元一本
2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?
8除4/5=10(km/)
4/5除8=0.1(kg)
3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时 ?
30÷1/2=60千米 1÷60=1/60小时
4.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?
原来有x名同学,女生数不变,所以(1-4/7)x=(x-5)*12/23
求出x=28
5.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?
62-24=38(只)
3/5红=2/3黄
9红=10黄 红:黄=10:9
38/(10+9)=2
红:2*10=20
黄:20*9=18
6.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?
原有女生:36×4/9=16(人)
原有男生:36-16=20(人)
后有总人数:20÷(1-3/5)=50(人)
后有女生:50×3/5=30(人)
来女生人数:30-16=14(人)
7.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?
2.16/(1+1/11)=1.98(立方米)
8.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?
现在甲乙各有
560÷2=280吨
原来甲有
280÷(1-2/9)=360吨
原来乙有
560-360=200吨
9.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?
原价是
200÷2/11=2200元
现价是
2200-200=2000元
10。一辆车从甲地到乙地,行了全程的2/5还多20千米,这时候离乙地还有70千米,甲乙两地相距多少千米?
全程的
1-2/5=3/5
是
20+70=90千米
甲乙两地相距
90÷3/5=150千米
11.小明看一本书,第一天看了28页,第二天看了全书的1/5(5分之1),两天共看了全书的3/8(3分之8),这本书共有多少页?
第一天看的占全书的
3/8-1/5=7/40
这本书共有
28÷7/40=160页
12.师徒二人同加工一批零件,加工一段时间后,师傅加工了84个.徒弟加工了63个.师傅比徒弟多加工的正好占全部任务的1/28.这批零件共有多少个?
假设这批零件共有X个
1/28X=84-63
1/28X=19
X=532
所以这批零件共有532个。
13.一桶油,吃了7/10后,又添进了15千克,这时桶中的油正好是一桶油的一半,这桶油重多少千克?
15÷(7/10-1/2)=75(千克)
14.一列火车从上海开往天津,行了全路程的3/5,剩下的路程,如果每小时行106千米,5小时可以到天津.上海到天津的铁路长多少千米?
(106*5)/(1-(3/5))
=530/0.4
=1325(km)
15.六年级参加数学兴趣小组的共有46,其中女生人数的4/5是男生人数的3/2倍,参加兴趣小组的男、女生各有多少人?
男女生人数比是:4/5:3/2=8:15
男生人数:46/(8+15)*8=16人
女生人数46-16=30人
16.张红抄写一份稿件,需要5小时抄完.这份稿件已由别人抄了1/3,剩下的交给张红抄,还要用几小时才能抄完?
(1-1/3)/(1/5)=10/3
还要3 1/3个小时抄完
17.两列火车同时从相距600千米的两城相对开出.列火车每小时行60千米,另一列火车每小时行75千米,经过几小时两车可以相遇?
600/(60+75)=40/9(小时)
经过40/9小时两车可以相遇。
18.一辆摩托车每小时行了64千米,找这样的速度,从甲到乙用了3/4小时,甲乙两地相距多少千米?
64×3/4=48千米
19.水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?
第一天卖出水果总重量的3/5,则,第二天卖了2/5,
3/5-2/5=1/5,第一天比第二天多的,
30÷1/5=150千克,
算式是,
1-3/5=2/5
3/5-2/5=1/5
30÷1/5=150千克
20.西街小学共有学生910人,其中女生占4/7,女生有多少人?男生有多少人?
910*4/7=(910*4)/7=520......女生
910-520=390.......男生
21.一块长方形地,长60米,宽是长的2/5,这块地的面积是多少平方米?
4/5*5/8=(4*5)/(5*8)=1/2(米)
4/5-1/2=8/10-5/10=3/10(米)
22.金鱼池里红金鱼与黑金鱼条数的比是7:3,黑金鱼有9条,红金鱼有多少条?
9÷3×7=21条
23.6年级有学生132人,其中男学生与女学生人数的比是6:5,6年级男.女学生各有多少人?
132÷(6+5)=12人
男同学有
12×6=72人
女同学有
12×5=60人
24.甲数和乙数的比是2:3,乙数和丙数的比是4:5.求甲数和丙数的比.
甲:乙=2:3=8:12
乙:丙=4:5=12:15
甲:乙:丙=8:12:15
甲:丙=8:15
25.解放路小学今年植树的棵数是去年的1.2倍.写出这个小学今年植树棵数和去年植树棵数的比.化简.
1.2:1=6:5
26.一个电视机厂去年彩色电视机的产量与电视机总产量的比是20分之9.去年共生产电视机250000太,其中彩色电视机有多少台?
250000×20分之9=112500台
27.某工厂工人占全厂职工总数的3分之2,技术人员占全场职工总数的9分之2,其余的是干部.写出这个厂的工人,技术人员和干部人数的比.
干部占全厂职工总数的
1-3分之2-9分之2=9分之1
这个厂的工人,技术人员和干部人数的比是
3分之2:9分之2:9分之1=6:2:1
28.某班学生人数在40到50人之间,男生人数和女生人数的比是5:6.
这个班的男生和女生各有多少人..
因为人数为整数,
所以班级人数能被5+6=11整除
所以班级人数为44人
男生有
44÷(5+6)×5=20人
女生有
44-20=24人
29.图书馆科技书与文艺书的比是4 :5,又购进300本文艺术后,科技书与文艺书的比是5 :7,文艺书比原来增加了百分之几?
文艺书原有:300÷(7/12-5/9)=10800(本)
文艺书比原来增加了:300÷10800≈2.8%
30.100克糖水正好装满了一个玻璃杯,其中含糖10克.从杯中倒出10克糖水后,再往杯中加满水,这是被子里糖与水的比是多少?
原来里面水是90,糖是10
倒出10克,那里面还剩90,其中水81,糖9
再加满水又水为91,糖还是9
那就是9/91
31.五、六年级只有学生175人。分成三组参加活动。一、二两组的人数比是5:4,第三组有67人,第一、二两组各有多少人?
(1)一、二组共有学生175人-67人=108人
(2)一组学生有108人×5/9=60人
(3)二组学生有108人×4/9=48人
32.某校有学生465人,其中女生的2/3比男生的4/5少20人。男·女各个多少?
女生的3分之2比男生的5分之4少20人
女生比男生的(4/5)/(2/3)=6/5少20/(2/3)=30人
男生有
(465+30)/(1+6/5)=225(人)
女生有
465-225=240(人)
33.一份稿件,第一天打了全篇稿的7分之1第二天打了5分之2第二天比第一天多打了9页,这篇稿件有多少页?
9除以(5分之2-7分之1)
=9除以35分之9
=35(页)
答:这见稿件有35页。
34.一块地,长和宽的比是8:5,长比宽多24米。这块地有多少平方米?
设长是8份,则宽是5份,多了:3份,即是24米
那么一份是:24/3=8米
即长是:8*8=64米,宽是:8*5=40米
面积是:64*40=2560平方米
35.如果男同学的人数比女同学多25%那么女同学的人数比男同学少多少?
女同学为单位1
男同学为1+25%=125%
女同学的人数比男同学少(125%-1)÷125%=20%
36.饲养厂今年养猪1987头,比去年养猪头数的3倍少245头,今年比去年多养猪多少头?
去年养猪:(1987+245)/3=744
今年比去年多养猪:1987-744=1243
37.小伟和小英给希望工程捐款钱数的比是2:5.小英捐了35元,小伟捐了多少钱?
设小伟捐了X元
所以 2:5=X:35 得:X=14元 小伟捐了14元
38.三个平均数为8.4,其中第一个数是9.2,第二个数比第三个数少0.8,第三个数是什么
第3个数是8.4
解:设第3个数为x,列方程为:
3*[9.2+(x-0.8)+x]=8.4
解得 x=8.4
39.有两根绳子,第一根绳子的长度是第二根的1.5倍,第二根比第一根短3米,两根绳子各长多少米?
设第二根长x米,则第二根长1.5x米
1.5x-x=3
0.5x=3
x=6
6×1.5=9(米)
第一根长6米
第二根长9米
40.工程队修一条路,已修好的长度与剩下的比是4:5,若再修25米就恰好修到了这条路的中点,这条路全长多少米?
4+5=9
解:设这条路全长x米:
(5/9-4/9)x=25
1/9x=25
x=225
这条路全长225米
41.要有算式把一个圆形纸片沿着半径剪成若干面积相等的小扇形,一上一下拼成一个近似的长方形.新图形的周长比圆形纸片的周长增长了16厘米.求这个圆形纸片的面积?
新增加的16厘米就是长方形的二个宽,即圆的二个半径。
那么半径是:16/2=8
圆的面积是:3。14*8*8=200。96
42.两个圆的面积之差是209平方厘米,已知大圆的周长是小圆周长的10/9倍,则小圆的面积为多少平方厘米?
大圆的周长是小圆周长的10/9倍,半径就是10/9倍,面积就是(10/9)^2=100/81倍,下面是差倍问题,小的数=差/(倍数-1)=209/(100/81 -1)=891
43.一个圆从圆周上某一点开始,以弧长54厘米分段,正好分成整数段,仍从那个点开始,以弧长72厘米来分段,也正好分成整数段,两次分段在圆周上留下60个分点,则这个圆的周长是多少厘米?
设圆 周长为C,则C是54的倍数,C也是72的倍数,那么C是他们最小公倍数216的倍数。在216厘米中有按54划分的点(不计最后一个点,把这个算在下面一个216的第一个点)4个,由按72划分的点3,一共有4+3-1=6个点(第一个点,两个公用)。所以就是说,每216厘米中有6个点,所以周长(60/6 )*216=2160厘米。
44.在正边形的一顶角栓了一小狗,绳长为6米,正五边形建筑边长为2.5米,求这只狗的活动范围。
正五边形每个内角180*(5-2)/5=108度
(360-108)/360*Pi*6^2+2*(180-108)/360*Pi(6-2.5)^2+2*(180-108)/360*Pi(6-5)^2=42.2Pi=132.57平方米。
45.有一根长为40米的铜丝,在一个圆管上绕了12圈,还剩下2.32米,求圆管的直径?
1:若不剩则有40-2.32=37.68(米)
2:一圈为:37.68除12=3.14(米)
3:求直径:3.14除3.14=1(米)
答:直径为1米
46.运一批货物,第一次运走百分之20,第二运走6吨,第三次运走的比前两次的中和少2吨,这时剩下这批货物的三分之一没有运走,这批货武功有多少吨?
设这批货总共有X吨,列方程得
X-20%X-6-1/3X=20%X+6-2
X=37.5
47.将一个圆眼半径剪开,在拼成一个近似的长方形。已知长方形的周长是41.4厘米,那么,这个圆的周长和面积各是多少?
解:设半径为x厘米,因为长方形的宽就是圆的半径,长方形的两条长就是圆的周长。圆的周长公式是:半径×2×3.14
(3.14×2x)+2x=41.4
6.28x+2x=41.4
8.28x=41.4
x=5
圆的周长:半径×2×3.14
5×2×3.14=31.4平方厘米
圆的面积:半径×半径×3.14
5×5×3.14=78.5平方厘米
即:20%X+6+(20%X+6)-2+x/3=x
得x=37.5吨
48.某工厂在一个月中,上半月生产了350件产品,合格率为90‰;下半月生产了450件产品,合格率为96‰.这个月的产品合格率是多少?
350*90%=315件
450*96%=432件
(432+315)/(350+450)*100%=747/800*100%=93.375%
49.甲乙两家商店,甲店利润增加25%,乙店利润减少25%,那么这两家店的利润就相同,原来甲店的利润是乙点利润的百分之几?
1÷(1+25%)=4/5
1÷(1-25%)=4/3
4/5÷4/3=60%
50.果园里收获苹果和梨共8800千克,苹果比梨多20%,两种水果各多少?
梨8800/(1+20%+1)=4000千克
苹果8800-4000=4400千克
1. 小红身高是156厘米,小芳身高是1.52米,小红比小芳高多少?
2. 50千克油菜籽可以榨油15千克,照这样计算,5吨油菜籽可以榨油多少千克?
3. 小明家离学校1.5千米,小南家离学校1千米60米,谁家离学校近?近多少?
4. 一只非洲鸵鸟中约150千克500克,一头猪中约123.06千克,一只鸵鸟比一头猪重多少千克?再把结果写成复名数。
5. 一种播种机的播种宽度是3米,播种机每小时行5千米,照这样计算,2小时可以播种多少公顷?
4、修路队第一天修了1.078千米,第二天比第一天多修0.456千米,修路队两天一共修了多少千米?4、希望小学的同学修理桌椅节约了40.25元,装订图书比修理桌椅少节约了3.7元。装订图书节约了多少元?
5、小亮爸爸给他买了一套电脑桌椅,一张椅子的价钱是45元,比一张桌子便宜12.5元。一张桌子多少元?
6、、运动会跳远比赛,小红的成绩是2.85米,小明比小红多跳1.25米,小红比小菊多跳0.23米。这次跳远比赛谁得第一呢?为什么?
7、张庄小学的同学们修理桌椅花了40.25元,比装订图书多花了3.7元。装订图书花了多少元?(用方程解)
8、小虎早上从家到学校上学,要走1.3千米,他走了0.3千米后发现没有带数学作业本,又回家去取。这样他比平时上学多走了多少千米
9、苏果超市运来哈密瓜0.31吨,西瓜比运来的哈密瓜多2.75吨,两种瓜一共运来多少吨?
10、张大妈装了一篮菜去农贸市场卖,篮和菜原来称得质量7.4千克,卖出一些菜后,她回家称得篮和菜质量3.6千克。她卖出了多少千克菜?
11、三人进行60米比赛。刘明用9.6秒,李强比他慢0.5秒,赵亮比李强快0.2秒。他们三人的名次各是多少呢?
12、学校用200元购买图书,买科技书用去87元5角,买故事书用去32元零4分,还剩多少元?
13、甲、乙两地相距220米,小华和小红分别从甲、乙两地出发相对走来,当小华走了85.2米,小红走了70.5米时,两人还相距多少米?
14、小明买了一支钢笔和一本日记本,钢笔的单价是12.7元,日记本的价钱是4.5元。小明付给营业员20元,应找回多少元?
15、一瓶油连瓶重3.4千克,用去一半后,连瓶还重1.9千克。原来有油多少千克?瓶重多少千克
16、修一条公路,已经修好了134.5千米,剩下的比修好的少13.6千米,这条公路全长多少千米?
17、一根竹竿垂直插入水池中,竹竿入泥部分是0.6米,露出水面部分是0.7米,水池深2米2分米,这根竹竿长多少米?
18、一根4.8米的长竹竿垂直插入水池中,竹竿的入泥部分是0.3米,露出水面的部分是1.75米,池水深多少米?
19、一个三角形的周长是16.4厘米,其中第一、二两条边都是5厘米,求第三条边长多少厘米?
20、小张、小李、小王三人称体重,小张和小李合称共重90.8千克,小王和小李合称共重88.5千克。求小张比小王重多少千克?
21、张大伯家种了三块责任田。第一块1080平方米,比第二块多15.7平方米,第三块比第一块少8.5平方米。请你根据已知条件,至少提出两个问题,并解答。
? ?
22、爸爸的身高比小红高0.52米,比妈妈的身高高0.21米,妈妈的身高比小红高多少米?
23、超市有一种红外线遥控坦克玩具,售价130.00元,打折后便宜了13.00元,小明准备用买两辆迷你赛车的钱去买这辆玩具坦克,每辆迷你赛车售价55.00元,他的钱够吗?如果不够,还差多少钱?
24、水泥厂今年拨出332.4万元用于治污,改建污水池用去234.7万元,又拨款85.5万元,。现在厂里治污款还有多少万元?
25、乙地在甲、丙两地的正中间,一辆汽车从甲地出发行48.5千米后离乙地还有14.5千米,这时汽车离丙地还有多少千米?
26、亚细亚的一款儿童套装原来售价是125.90元,庆“六一”促销价是98.80元,便宜了多少钱?
27、小王重36.5千克,小李重41.4千克,一个相扑运动员的体重是125.8千克,这个运动员的体重比小王、小李两人的体重和还要重多少千克?
28、小强比小芳高0.19米,小芳比小虎矮22厘米,小虎比小强高多少米
29、某人买一件物品,付给营业员50元,营业员把这件物品标价的小数点看错了一位,找给他46.75元,他说找多了。这件物品的标价是多少元?
30、 水果店运来了3筐苹果,每筐30.5千克,一共运来多少千克?如果每千克苹果售价2.6元,这些苹果一共可收入多少元?
31、学校平均每天用电17.3度,5月份一共要用电多少度?如果每度电0.5元,这个月要交电费多少
32、无锡灵山大佛高88米,是四川乐山大佛的1.15倍还多0.6米,四川乐山大佛的高度是多少米?
33、水果店每一天卖出苹果32.5千克,每二天卖出的是第一天的0.9倍。
第二天卖出苹果多少千克?哪天卖得多?多多少千克?
34、小明在书店买了两本作文书,一本10.8元,另一本7.6元,他付出20元,应找回多少钱
35、 利红超市周一的营业额为2.35万元,周二的营业额是周一的1.3倍,哪天多?多多少万元?(结果保留一位小数
36、 一种窗户玻璃的长是1.3米,宽是1.1米,那么做12扇这样的窗户至需要多少平方米玻璃?(结果保留整数)
37、 一块平行四边形的土地,底边长比高多出3.5米,已知底边长是16.8米,这块地的面积是多少平方米?
38、 苹果每千克3元,桔子每千克2.2元,小明用30元钱买分别买5千克苹果和桔子,应变找回多少元?
39、 甲乙丙三个数的平均数是5,乙丙两数的一半是4.5,甲数是多少?
40、 学校手工小组用95.2平方分米的彩纸做了28个工艺品,平均每个工艺品用纸多少平方分米
41、 小明买5千克苹果用去16.5元,小红买7千克苹果用去21.7元,谁买得贵?贵多少?8、4只大熊猫3天吃掉竹叶36.24千克,平均每只大熊猫每天吃多少千克竹叶?
42、 甲乙两地相距66千米,一艘轮船从甲地到乙地用了1.2小时,返回时用了1小时,这艘轮船往返一次的平均速度是多少?
43、 120千克油菜籽可榨菜油38千克,每千克油菜籽可榨菜油多少千克?(结果保留一位小数)
44、 一块长方形菜地长11米,比宽长2米,在这块菜地上共收白菜445.5千克白菜,平均每平方米地收白菜多少千克?
45、一批货物75吨,已经运了6次,还剩41.4吨,平均每次运了多少吨?剩下的还要运几次?(结果保留整数)
46、 五(1)班有45人参加了兴趣小组,是五(2)班的1.5倍,两个班一共多少人参加了兴趣小组?
47、 有5个数的平均数是19.68,前3个数的平均数是18.9,后三个数的平均数是29.4,中间一个数是多少?
48、一台磨面机1小时可磨面粉5.6千克面粉,那么这台磨面机4.5小时可磨面粉多少千克?
49、一个正方形的周长是5.6分米,这个正方形的面积是多少平方分米?
50、小明和爸爸玩电动飞机,买票时小明付出10元,找回2.5元,电动飞机的票价学生是成人的一半,那么学生票和成人票各是多少元?
㈢ 五年级上册奥数应用题(附答案)
1.甲、乙两地相距465千米,一辆汽车从甲地开往乙地,以每小时千米的速度行驶一段后,每小时加速15千米,共用了7小时到达乙地。每小时60千米的速度行驶了几小时?
2.笼中装有鸡和兔若干只,共100只脚,若将鸡换成兔,兔换成鸡,则共92只脚。笼中原有兔、鸡各多少只?
3.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀。蝉有6条腿和1对翅膀。现在这三种小虫共18只,有118条腿和20对翅膀,每种小虫各几只?
4.学雷锋活动中,同学们共做好事240件,大同学每人做好事8件,小同学每人做好事3件,他们平均每人做好事6件。参加这次活动的小同学有多少人?
5.某班42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,已知男生比女生多种56棵,男、女生各有多少人?
答案:
1.解:设每小时60千米的速度行驶了x小时。
60x+(60+15)(7-x)=465
60x+525-75x=465
525-15x=465
15x=60
x=4
答:每小时60千米的速度行驶了4小时。
2.解:兔换成鸡,每只就减少了2只脚。
(100-92)/2=4只,
兔子有4只。
(100-4*4)/2=42只
答:兔子有4只,鸡有42只。
3.解:设蜘蛛18只,蜻蜓y只,蝉z只。
三种小虫共18只,得:
x+y+z=18……a式
有118条腿,得:
8x+6y+6z=118……b式
有20对翅膀,得:
2y+z=20……c式
将b式-6*a式,得:
8x+6y+6z-6(x+y+z)=118-6*18
2x=10
x=5
蜘蛛有5只,
则蜻蜓和蝉共有18-5=13只。
再将z化为(13-y)只。
再代入c式,得:
2y+13-y=20
y=7
蜻蜓有7只。
蝉有18-5-7=6只。
答:蜘蛛有5只,蜻蜓有7只,蝉有6只。
4.解:同学们共做好事240件,他们平均每人做好事6件,
说明他们共有240/6=40人
设大同学有x人,小同学有(40-x)人。
8x+3(40-x)=240
8x+120-3x=240
5x+120=240
5x=120
x=24
40-x=16
答:大同学有24人,小同学有16人。
5.解:设男生x人,女生(42-x)人。
3x-2(42-x)=56
3x+2x-84=56
5x=140
x=28
42-x=14
答:男生28人,女生14人
㈣ 五年级上册奥数5道
水果店运来的西瓜个数是哈蜜瓜个数的4倍,如果每天卖130个西瓜和36个哈蜜瓜,那么哈蜜瓜卖完后还剩下70个西瓜。问:水果店运来的西瓜和哈蜜瓜共有多少个?
五、答案及思路分析
假定每天卖36个哈蜜瓜时,卖出的西瓜是36×4=144个。则哈蜜瓜和西瓜一定同时卖完。
事实上每天少卖144-130=14个。
当哈蜜瓜卖完时,哈蜜瓜多了70个,因此:
70÷14=5(天) 一共卖了5天瓜。
36×5=180个 180×4=720(个)
所以,水果店运来的西瓜是720个,哈蜜瓜是180个。
720+180=900(个)
答:水果店共运来的西瓜和哈蜜瓜是900个。
甲、乙、丙共有100本课外书。甲的本数除以乙的本数,丙的本数除以甲的本数,商都是5,余数也都是1。那么乙有多少本书?
分析:这是和倍问题。看懂题后可以这样理解,“甲、乙、丙3个数是100,甲是乙的5倍多1,丙是甲的5倍多1,求甲、乙、丙各是几?”。即:乙是1倍;甲是乙的5倍多1;丙是乙的(5×5)倍多(1×5+1)6。那么100减去(1+6)的差对应(1+5+5×5)倍,这样可求出乙是多少。
解:〔100-1-(1×5+1)〕÷(1+1×5+1×5×5)=91÷31=3(本)
答:乙有3本书。
长方形场地:一个长84米,宽54米的长方形苹果园中,苹果树的株距是2米,行距是3米.这个苹果园共种苹果树多少棵?
解:
解法一:
①一行能种多少棵?84÷2=42(棵).|
②这块地能种苹果树多少行?54÷3=18(行).
③这块地共种苹果树多少棵?42×18=756(棵).
如果株距、行距的方向互换,结果相同:
(84÷3)×(54÷2)=28×27=756(棵).
从现在起,两年后母亲的年龄是女儿年龄的6倍,之后再过20年女儿的年龄是母亲的一半,求母,女现在的年龄??
解:设女儿现在的年龄为X,两年后女儿年龄为X+2
母亲为6(X+2),再过22年后,女儿年龄年龄为X+22
母亲年龄为6(X+2)+22-2
根据题意:
得出方程:X+22=1/2*〖6(X+2)+20〗
解得X=3,所以女儿的年龄为3岁
母亲的现在年龄为6*(3+2)-2=28小学奥数年龄问题
小明问李老师今年多少岁,李老师说:“当我像你这么大时,你才3岁,当你像我这么大时,我已经42岁了。”你知道李老师今年多少岁吗?
假设小明今年x岁,
根据“当我像你这么大时,你才3岁”
可以知道小明3岁时,李老师x岁。
所以李老师比小明大(x-3)岁,
说明今年李老师x+(x-3)=2x-3岁。
根据“当你像我这么大时,我已经42岁了。”
说明又过了x-3年,
可以得到:(2x-3)+(x-3)=42.
所以x=16.
所以2x-3=29岁。
李老师今年29岁.
例1 两筐水果共重150千克,第一筐比第二筐多8千克,两筐水果各多少千克?分析 这样想:假设第二筐和第一筐重量相等时,两筐共重150+8=158(千克);假设第一筐重量和第二筐相等时,两筐共重150-8=142(千克). 解法1:①第二筐重多少千克? (150-8)÷2=71(千克) ②第一筐重多少千克? 71+8=79(千克)
或 150-71=79(千克) 解法2:①第一筐重多少千克? (150+8)÷2=79(千克) ②第二筐重多少千克? 79-8=71(千克) 或150-79=71(千克) 答:第一筐重79千克,第二筐重71千克。 例2 今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?分析 题中没有给出小强和爸爸年龄之差,但是已知两人今年的年龄,那么今年两人的年龄差是35-7=28(岁).不论过多少年,两人的年龄差是保持不变的.所以,当两人年龄和为58岁时他们年龄差仍是28岁.根据和差问题的解题思路就能解此题。 解:①爸爸的年龄:
[58+(35-7)]÷2 =[58+28]÷2 =86÷2 =43(岁) ②小强的年龄: 58-43=15(岁) 答:当父子两人的年龄和是58岁时,小强15岁,他爸爸43岁。 例3 小明期末考试时语文和数学的平均分数是94分,数学比语文多8分,问语文和数学各得了几分? 分析 解和差问题的关键就是求得和与差,这道题中数学与语文成绩之差是8分,但是数学和语文成绩之和没有直接告诉我们.可是,条件中给出了两科的平均成绩是94分,这就可以求得这两科的总成绩。 解:①语文和数学成绩之和是多少分?94×2=188(分) ②数学得多少分? (188+8)÷ 2=196÷2=98(分) ③ 语文得多少分? (188-8)÷2=180÷2=90(分)或 98-8=90(分) 答:小明期末考试语文得90分,数学得98分. 例4 甲乙两校共有学生864人,为了照顾学生就近入学,从甲校调入乙校32名同学,这样甲校学生还比乙校多48人,问甲、乙两校原来各有学生多少人? 分析 这样想:甲、乙两校学生人数的和是864人,根据由甲校调入乙校32人,这样甲校比乙校还多48人可以知道,甲校比乙校多 32×2+48=112(人). 112是两校人数差。
解:①乙校原有的学生:
(864-32×2-48)÷2=376(人)
②甲校原有学生:
864-376=488(人)
答:甲校原有学生488人,乙校原有学生376人。
㈤ 五年级上册奥数题 人教版
.xy,zw分别表示一个两位数,若xy+zw=139,那么x+y+z+w=?
因为个位是,所以个位相加没有进位个位
即:个位数的和Y+W=9,而不会是19,29,39....
所以十位数的和X+Z=13
于是:x+y+z+w=22
2.有一条长500米的环行跑道,甲乙两人同时从跑道上的某一点出发,如果反向而跑,则1分钟后相遇;如果同向而跑,则10分钟后追上.以知甲比已跑的快,问:甲已两人每分钟各跑多少米?
反向,二人的速度和是:500/1=500
同向,二人的速度差是:500/10=50
甲的速度是:(500+50)/2=275米/分
乙的速度是:(500-50)/2=225米/分
3一个圆形跑道上,下午1:00,小明从A点,小强从B点同时出发相对而行,下午1:06两人相遇,下午1:10,小明到达B点,下午1:18,两人再次相遇.问:小明环行一周要多少分钟?
由题目得知,小强第一次相遇 前行了6分钟的距离小明行了4分钟,那么小明的速度是小强的:6/4=1。5倍。
又从第一次相遇 到第二次相遇 一共用了:18-6=12分。
所以小强的速度是:(1/12)/(1+1。5)=1/30
即小明的速度是:1/30*1。5=1/20
那么小明行一圈的时间是:1/(1/20)=20分。
4.a、b和c都是两位的自然数,a、b的个位数分别是7和5,c的十位数是1.如果满足等式ab+c=2005,则a+b+c=?
首先我们可以通过B的个位为5来判断C的个位应该为0
这样可以知道C的个位与十位是10
则AB应该为2005-10=1995,
相乘得1995的两位数中,只有57与35的个位数分别为7和5,因此判定
a+b+c=57+35+10=102
5——11题
1、22……2[2000个2]除以13所得的余数是多少?
2、1的平方+2的平方+3的平方……+2001的平方+2002的平方除以4的余数是多少?
3、数1998*1998*1998*……*1998[2000个1998连乘]的积除以7的余数是多少?
4、一个整数除以84的余数是46,那么他分别除以3、4、7所得的三个余数之和是多少?
5、甲、乙、丙、丁四个旅行团分别有游客69人、85人、93人、97人。现在要把四个旅行团分别进行分组,使每组都是A名游客,以便乘车前往参观旅游。已知甲、乙、丙三个团分成每组A人的若干组后,所剩下的人数相同,问丁旅行团分成每组A人的若干组后还剩下几人?
6、号码分别为37、57、77、和97的四名运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和除以3的余数,那么打球盘数最多的运动员是几号?他打了多少盘?
1、222222可以整除13,所以2000个2的话包含333组循环,剩下最后的22,所以余数是9
2、因为每偶数项都能整除4,所以只剩下奇数项,我们能知道:1的平方+3的平方+5的平方+7的平方刚好也能被4整除,同样11的平方+13的平方+15的平方+17的平方他们也能被四整除,最后只剩下250个9的平方+2001的平方,所以最后只剩下250+1=251,所以余数为3
3、1998除以7余数是3,所以我们可以把1998=7*n+3
总共有2000个1998=7*n+3,所以最后就是2000个3相乘,即为3^2000=9^1000=(7+2)^1000,所以又变成求2^1000除以7的余数了,2^1000=1024^100=(146*7+2)^100,变成了2^100除以7的余数了,同理,最后变成1024除以7的余数了,也就是2,所以1998*1998*1998*……*1998[2000个1998连乘]的积除以7的余数是2.
4、设为84a+46,则84a能被3,4,7整除,答案即为46除以3、4、7所得的三个余数之和1+2+4=7
5、此题目的意思为,69=n1*A+a、85=n2*A+a、93=n3*A+a
16=(n2-n1)*A 8=(n3-n2)*A 24=(n3-n1)*A
所以我们可以知道A=8或者4,或者2,若为8则,丁所剩的人数为1,若A为4,余数为:1,所以不管A为8,还是4,还是2,余数都是1.
6、因为37号的各位和十位的和为10,57的为12,77的为14,97的为16,所以我么知道10+12除以3余数为1,10+14除以3余数为0,10+16的余数为2,12+14的余数为2,12+16的余数为1,14+16的余数为0,所以我们知道,37号要打3场,57要打4场,77要打2场,97要打3场,所以最多的是57号
12——16T
1.一部书,甲、乙两个打字员需要10天完成,两人合打8天后,余下的由乙单独打,若这部书由甲单独打需要28天完成。问乙又干了几天完成?
2.一批货物,A、B两辆汽车合运6天能运完这批货物的5/6,若单独运,A运完1/3,B运完1/2。若单独运,A、B各需要多少天?
3.有一些机器零件,甲单独完成需要17天,比乙单独完成多用了1天。两人合作8天后,剩下420个零件由甲单独制作,甲共制作了多少个零件?甲共干了几天?
4.水池上装有甲、乙两个水管,齐开两水管12小时注满水池。若甲管开5小时,乙管开6小时,只能注水池的9/20。若单独开甲管和乙管各需要几小时注满?
1.甲单独打需要28天,所以甲每天可以完成任务的1/28,甲乙合打十天完成,所以甲乙合打每天可以完成任务的1/10,所以乙每天可以完成任务的1/10-1/28=9/140,两人合打8天后还剩下任务的1/5,所以乙又干了1/5除以9/140=28/9天
2.两辆汽车合运6天完成5/6,所以合运一天可以完成5/36,A运完1/3的时候B可以运完1/2,所以B的速度是A的1.5倍,所以A每天可以运完这批货物的2/36,B可以运完3/36,所以A单独运需要18天,B单独运需要12天。
3.甲每天能完成1/17,乙每天能完成1/16,合干8天共完成33/34,剩下1/34为420个,所以这些零件一共有420*34=14280个,甲共制作了14280*8/17+420=7140个,一共干了1/34除以1/17+8=8.5天,所以甲一共干了8天半
4.甲乙齐开12小时注满,所以甲乙齐开每小时注入1/12,设甲每小时注入为X,乙为Y,5X+6Y=9/20,上式合并为5(x+y)+y=9/20,x+y是甲乙齐开的效率,就是1/12,带入式子得y=1/30,所以x=1/12-1/30=1/20,所以单开甲20小时注满,单开乙30小时注满
17.在300米长的环形跑道上,甲、乙两人同时同向并排起跑,甲平均每秒跑5米,乙平均每秒跑4.4米。两人起跑后的第一次相遇在起跑线前多少米? (列算式并算出答案(可写综合算式)
300/(5-4.4)=500秒
500*4.4=2200米
2200除以300等于7圈余100
所以两人起跑后的第一次相遇在起跑线前100米
18——20
1.小红从张村到李村,如果每小时走15千米,就可以比原计划早到24分钟,如果每小时走12千米,就会比原计划晚到15分钟,张村到李村的路程是多少?
设原来从张村到李庄需X小时
24分=0.4时 15分=0.25时
由于路程一定,速度和时间成反比例
15×(X-0.4)=12×(X+0.25)
X=3
张庄到李庄的路程是:15×(3-0.4)=39(千米)
2.一个书架宽88厘米,某一层上摆满了数学书和语文书,共90册,一本数学书厚0.8厘米,语文1.2厘米,语文和数学各有多少本?
设数学书x本 则语文书(90-x)本
0.8x+1.2(90-x)=88
x=50
90-x=40
数学书50本
语文书40本
3.某中学七年级举行足球赛,规定:胜一场3分,平一场1分,负一场0分,七年1班比赛中共积8分,其中胜与平的场数相同,负比胜多1场,胜,平,负各几场?
解:设胜的场数为x
3x+1x+0*(x+1)=8
4x=8
x=2
胜2场
平2场
负3场
专业小学奥数网站 马到成功奥数网
由多位资深奥数教练创办专业小学奥数网站,及时上传小升初及华校最新试题及解析,详尽的奥数专题指导,在中小学奥数辅导方面,注重数学思想与方法的传播,努力让中小学生从网站与小班教学上同时得到学习方法指导,迅
www.8844aoshu.com/Article_Show.asp?Articl ... 1K 2006-05 - 推广
【中国奥数网 aoshu.cn—奥林匹克数学门户】学而思..
首页|招生信息|重点中学|趣味数学|小学奥数|奥数学习方法|华数思维训练导引 题库|数学竞赛|初中数学|...中考网 学而思教育办公室工作时间调整! 奥数网辅导班问与答 奥数网长期诚聘北京优秀奥数老师! 2006...
www.aoshu.cn/ 108K 2006-5-23 - 网络快照
【中小学数学网:mathcn.com】初中小学数学教案,..
奥数网第四个教学点定于大钟寺中鼎大厦! 网站 中国奥数网 北京中考网 北京家教网 中小学生...小学数学网近日大幅度更新,目的是构建一个广大师生共享的小学数学平台,您觉得对您最重要的是什么? 1.数学试题 2...
www.mathcn.com/ 85K 2006-5-23 - 网络快照
中小学多媒体奥数网欢迎您! >> 网站首页
[注意]新版中小学奥数网站数据更 [推荐]猪八戒新传之斗鳄鱼精 [推荐]猪八戒新传之智斗虎精 [推荐]欧拉智...友情链接 | 版权申明 | 管理登录 | Copyright 2002-2006 中小学多媒体奥数网 www.wxml.com.cn 站长:...
www.wxml.com.cn/ 54K 2006-5-23 - 网络快照
1+E 数学乐园 >> 数学乐园 >> 首页
赢取网… [03-19] 公告:如何在本站上发表文章… [03-04] 公告:发表文章赠送点数 [03-03] 1+e数学乐园最新版和大家见… [02-07] 生活自理能力太差 17岁硕博… [06-30] 奥数选手成为国际一流大数学… [04-03] “奥数”竞赛培训让...
www.aoshu.com/ 80K 2006-5-23 - 网络快照
任我学小学奥数网
由我公司历时2年,集中了成都市小学奥数的精华师资力量,投入大量财力开发完成,涵盖小学3到6年级的小学奥数课程,以视频课堂为主要形式,是国内最优秀的小学奥数辅导教程之一。 为了让广大学生轻轻松松学奥数,让家长轻轻松松付学费...
e.tfol.com:81/greenaoshu/ 7K 2006-3-11 - 网络快照
【创新奥数 aoshue.cn】奥数网│小学奥数│奥数..
首页 奥数培训 数学竞赛 小学奥数 升学资讯 教育新闻 奥数论坛 奥数课堂 数学文化 中学奥数 用户: 密码: 用户: 密码: 本站公告 ·“希望杯”竞赛入选通知 ·创新奥数答疑通知 · 五一期间各班调课通知 创新小班 ·新开“行程问题”...
www.aoshue.cn/ 35K 2006-5-23 - 网络快照
广州新概念网络工作室主页——小学奥数网
网 站 公 告 中 国奥数比赛奖牌 网 站 信 息 阁下是第位到访客人 相 关 联 接 新用户注册 | 用户列表 | 在线查看 | 在线搜索 | 在线调查 今月导读 等级制乃中考改革大势所趋 新华网太原6月28日电 在近两年的高中招生考试中,宁夏...
www.wende.gd.cn/st/huo/news.asp?id=260 30K 2005-6-30 - 网络快照
小学奥数题库——【奥数网aoshu.cn】
首页|招生信息|重点中学|趣味数学|小学奥数|奥数学习方法|华数思维训练导引 题库|数学竞赛|...中考网 全国小学奥赛 2005全国数学奥林匹克决赛… 2005年小学数学奥林匹克预… 2004江苏“我们爱数学”少… ...
book.aoshu.cn/ 30K 2006-5-23 - 网络快照
三才教育 >> 清华班级 >> 清华小学奥...
[小学奥数-正在招生]小学奥数4、5、6年级重难点专题突破班——第二期 图腾美人… 2006-03-31 [小学奥数-正在招生]三才2006年春季各班级剩余名额统计表 教务处 2006-02-22 [小学奥数-正在招生]小学奥数-清华部-2006春季招生总...
www.sancaijiaoyu.com/BJqinghua/QHxxue/QHz ... 35K 2006-4-16 - 网络快照中小学奥数网欢迎您 >> 原创下载 >> ...
| 版权申明 | 管理登录 | Copyright 2002-2006 中小学奥数网 www.wxml.com.cn 站长:...
wxml.h75.1stxy.com/Soft/ShowClass.asp?Cla ... 21K 2006-3-24 - 网络快照
wxml.h75.1stxy.com 上的更多结果
【奥数网:aoshu.cn——中国奥林匹克数学题库】中..
2005年奥数网秋季班小学部各年级招生简章(学期班)! 新型高考独木桥形成:考不上清华北大就算...新开小升初系统复习小学奥数班! 小升初衔接班(8次课学完初一数学)开始招生! 2005年奥数网考入重点中学优秀...
ziyuan.xbdfx.com/wenyuan/2005-07/schoolin ... 111K 2005-7-25 - 网络快照
奥数网 - 大连市实验小学
作者: 来源: 阅读:677次 日期:2004-10-25 录入:fanghengli 【 评论】 【 推荐】 【 打印】 【 字体:大 中 小】 上一篇:为了中华民族的富强——苏步青的故事 下一篇:有趣的数学问题和题解 大连市实验小学信息技术中心 |加入收藏| ...
shiyan.fore.com.cn/n106c11.shtml 8K 2006-1-21 - 网络快照
浙江奥数网 >> 首页
小学奥数题库 >> 竞赛试题 今天访问人数:29人 [图文]2004年小学数学奥林匹克决赛 [小学数学奥林匹克竞赛...浙江奥数网将于2006年4月16日全国高中数学联赛浙江省预赛考试结束后公布标准答案及开通答疑专栏。...
www.zjaoshu.com/Article_Class.asp?ClassID=24 86K 2006-4-22 - 网络快照
石门教育信息网 >> 友情链接
小学奥数 奥数试题 小学数学 希望杯、迎春杯、同方杯、资源杯、圆明杯、华罗庚金杯、智慧杯、成达杯、奥数...湘北职专校园网,集新闻、音乐、动画、文章、软件、课件、影视、论坛于一站. zcc 修改 删除 ...
www.shme.com.cn/FriendSite/ 21K 2006-4-28 - 网络快照
金牌奥数网 华数 华罗庚金杯 迎春杯 希望杯 ...
小学奥数 中学奥数 奥数专题 趣味数学 奥数论坛 联系我们 奥数题库新增大量华杯赛考题 趣味数学新增数独游戏 我们...金牌奥数网 [email protected] (010)82624867 81232201 北京数圆育星文化传播中心 ...
aoshu.biz/ 4K 2006-4-30 - 网络快照
杏坛小学语文教学网
中小学奥数网 小学语文教材网 数学家教网 安吉实小 51中小学教育资源网 白水洋小学 教育导航网 中华教育资源网 中国小学名师网 荟娱教育资源 中小学教学研究 指尖学堂 高考 学校文教用品网 申请 更多>>> 本站公告: 目前网站...
www.vastman.com/ 78K 2006-5-23 - 网络快照
会计博客-适者生存
小学奥数网 育儿日记 学习网站 动力审计论坛 个体工商户会计制度 企业会计制度 企业会计准则 视野高级会计师版 税务专业服务网 中国财税论坛 中国财务纵横网 资料库2 自己的资料库 娱乐生活网站 网络MP3歌曲排行 中国瑜伽...
blog.esnai.com/phenix/ 48K 2006-5-23 - 网络快照
中国教师站联盟Cn-Teacher.com
中小学奥数网 数学家教网 中数网 姚老师语文网 语文课件素材站 语文课件素材站 初中语文资源网 新语文网站 3P作文网 苏教版高中语文教学网 中学语文资源站 中学语文阅读 飞扬语文 初中语文教学网 小学语文部落 语文的生命 ...
union.cn-teacher.com/ 31K 2006-5-19 - 网络快照
数学小屋
小学奥数网 日志信息 日志总数:83 评论数量:20 留言数量:0 访问次数: 加为好友 发送短信 时间单位练习 [周育钦 发表于 2006-5-19 17:09:34] …… 阅读全文 | 回复 | 引用通告 引蛇出洞——元角分练习 [周育钦 发表于 2006-5-16...
www.infoe.cn/rixin/user1/337/ 33K 2006-5-20 - 网络快照
九度数学网 >> 友情链接
小学奥数网 修改 删除 文字链接 小学教学资源 修改 删除 文字链接 丫丫教师社区 修改 删除 文字链接 北师大数学 修改 删除 文字链接 初中数学网 修改 删除 文字链接 课件素材中心 修改 删除 文字链接 镇江电信服务 修改 ...
www.the9.com/FriendSite/ 14K 2005-11-17 - 网络快照
教研组
一个教育局长的听课手记 数学新课程标准与主题式教学设计 弥补昨天的遗憾———关于期末考试的一点建议 推荐网站 小学数学网 小学奥数网 中教育星教育资源 数学教师驿站 著名的科普教育网站 学生天地 小素...
www.psfshl.pudong-e.sh.cn/maths/ 24K 2005-11-12 - 网络快照
数学导航---中国教育导航
中小学奥数网 教育部图书网 初中数学艺术网 小数123 奥数教育网 中国数学在线 初中数学乐园 苏科版初中数学网站 数学100 中学数学网 初中数学园地 数学专题资源网 中学数学课件资源网 数学小家 海天数学园 数学专页报社 ...
jydh.edown.net/cata/shuxue.html 10K 2006-5-7 - 网络快照
US-EDU ABC远程教育网(eabc.net) & CNN ...
小学奥数 奥数网 奥数题库 奥数试题 初中英语 幼儿英语 英语口语 英语写作 英语听力 英语语法 英语...摄影网 人像摄影 电子影集 轻松影集 个人影集 明星影集 电子相册 影集制作 照片 数码冲印 网上冲印 ...
cnnweb.net/ 34K 2005-1-20 - 网络快照
中小学多媒体奥数网欢迎您! >> 奥数信息 ...
趣味数学文章列表 共 19 篇文章 首页 上一页 下一页 尾页 页次:1/1页 20篇文章/页 转到: 本栏最新热门图片 没有任何图片文章 站内文章搜索 站长:tao Copyright 2002-2006 中小学多媒体奥数网 www.wxml.com.cn 站长:...
wxml.com.cn/Article/ShowClass.asp?ClassID=6 25K 2006-4-10 - 网络快照
>> 认识《中小学电脑报》 >> 友情链...
中国高中网(http://www.gzs.cn/)是一个为全国高中学生、教师、家长免费提供教育、学习、生活等各种资讯服务的综合性...小学奥数 奥数试题 小升初试题 华校试题解析 小学数学 中学数学中学奥数 初一奥数 ...
www.pmit.com.cn/FriendSite.asp 44K 2006-5-23 - 网络快照
Welcome to 春天
小学奥数 初中奥数 小升初中 名校明师 英语网 少儿英语 外教口语 商务英语 大学英语 中考高考 高考频道 中考频道 ...立体化服务;《江苏和谐教育网》必将成为各位会员温馨、和谐的家...
www.cbe21.net/cgi-bin/index.dll?column3?w ... 16K 2006-1-7 - 网络快照
莆田第二十五中学校园网 >> 友情链接
奥数,奥数网 小学奥数 奥数试题 小学数学 希望杯、迎春杯、同方杯、资源杯、圆明杯、华罗庚金杯、智慧杯、成达杯、奥数班、奥校奥数试题、奥数竞赛、奥数辅导 共 4 个站点 首页 上一页 下一页 尾页 页次:1/1页 20个站点/页 转到...
www.ptewz.com/FriendSite/ 9K 2006-4-7 - 网络快照
化学比特网 www.chembit.net >> 友情链接
化学信息网 免费教案、课件、试题、高考信息、新课程研究等 郑瑞军 修改 删除 LOGO...小学奥数 奥数试题 小学数学 希望杯、迎春杯、同方杯、资源杯、圆明杯、华罗庚金杯、智慧杯、成达杯、奥数班、奥校...
dlgz.nhe.net/hzw/FriendSite/ 18K 2006-3-29 - 网络快照
㈥ 五年级数学上册简单奥数题,及答案,有一点点难度。
1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?
2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?
3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?
4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?
5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?
五年级试题三答案
1,因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17,2个小组都不参加的17人
2,同理,数学满分10人,2科都满分的3人,于是只是数学满分的7人,45-7-29=9,这个就是语文满分的人(如果说只是语文满分的则需要减去3)
3,50÷4取整12,50÷6取整8,但是要注意,报4倍数的同时可能是6的倍数,所以还要算出4和6的公倍数,有50÷12(4和6的最小公倍数)=4(取整),所以,应该是50-12-8+4=34
4,100÷2=50,100÷3=33(取整),还是算出2和3的公倍数100÷6=16(取整),然后找出即没不被2整除,也不被3整除的数的个数100-50-33+16=28,所以,准备铅笔为50X2+33X3+28=227
5,180÷3=60,180÷4=45,但是可能2个划线划在一起,也就是要算出他们的公倍数,180÷3÷4=15,所以应该为60+45-15=90
㈦ 五年级上册奥数题,带答案的
第九讲 “牛吃草”问题
有这样的问题.如:牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周.那么它可供21头牛吃几周?这类问题称为“牛吃草”问题。
解答这类问题,困难在于草的总量在变,它每天,每周都在均匀地生长,时间愈长,草的总量越多.草的总量是由两部分组成的:①某个时间期限前草场上原有的草量;②这个时间期限后草场每天(周)生长而新增的草量.因此,必须设法找出这两个量来。
下面就用开头的题目为例进行分析.(见下图)
从上面的线段图可以看出23头牛9周的总草量比27头牛6周的总草量多,多出部分相当于3周新生长的草量.为了求出一周新生长的草量,就要进行转化.27头牛6周吃草量相当于27×6=162头牛一周吃草量(或一头牛吃162周).23头牛9周吃草量相当于23×9=207头牛一周吃草量(或一头牛吃207周).这样一来可以认为每周新生长的草量相当于(207-162)÷(9-6)=15头牛一周的吃草量。
需要解决的第二个问题是牧场上原有草量是多少?用27头牛6周的总吃草量减去6周新生长的草量(即15×6=90头牛吃一周的草量)即为牧场原有草量。
所以牧场上原有草量为27×6-15×6=72头牛一周的吃草量(或者为23×9-15×9=72)。
牧场上的草21头牛几周才能吃完呢?解决这个问题相当于把21头牛分成两部分.一部分看成专吃牧场上原有的草.另一部分看成专吃新生长的草.但是新生的草只能维持15头牛的吃草量,且始终可保持平衡(前面已分析过每周新生的草恰够15头牛吃一周).故分出15头牛吃新生长的草,另一部分21-15=6(头)牛去吃原有的草.所以牧场上的草够吃72÷6=12(周),也就是这个牧场上的草够21头牛吃12周.问题得解。
例2 一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?
分析 与解答这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进行分析。
如果设每个人每小时的淘水量为“1个单位”.则船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30.
船内原有水量与8小时漏水量之和为1×5×8=40。
每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量)。
船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量.3小时漏进水量相当于3×2=6人1小时淘水量.所以船内原有水量为30-(2×3)=24。
如果这些水(24个单位)要2小时淘完,则需24÷2=12(人),但与此同时,每小时的漏进水量又要安排2人淘出,因此共需12+2=14(人)。
从以上这两个例题看出,不管从哪一个角度来分析问题,都必须求出原有的量及单位时间内增加的量,这两个量是不变的量.有了这两个量,问题就容易解决了。
例3 12头牛28天可以吃完10公亩牧场上全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草.多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长草量相等)?
分析 解题的关键在于求出一公亩一天新生长的草量可供几头牛吃一天,一公亩原有的草量可供几头牛吃一天。
12头牛28天吃完10公亩牧场上的牧草.相当于一公亩原来的牧草加上28天新生长的草可供33.6头牛吃一天(12×28÷10=33.6)。
21头牛63天吃完30公亩牧场上的牧草,相当于一公亩原有的草加上63天新生长的草可供44.1头牛吃一天(63×21÷30=44.l)。
一公亩一天新生长的牧草可供0.3头牛吃一天,即
(44.l-33.6)÷(63-28)=0.3(头)。
一公亩原有的牧草可供25.2头牛吃一天,即
33.6-0.3×28=25.2(头)。
72公亩原有牧草可供14.4头牛吃126天.即
72×25.2÷126=14.4(头)。
72公亩每天新生长的草量可供21.6头牛吃一天.即
72×0.3=21.6(头)。
所以72公亩牧场上的牧草共可以供36(=14.4+21.6)头牛吃126天.问题得解。
解:一公亩一天新生长草量可供多少头牛吃一天?
(63×2i÷30-12×28÷10)÷(63-28)=0.3(头)。
一公亩原有牧草可供多少头牛吃一天?
12×28÷10-0.3×28=25.2(头)。
72公亩的牧草可供多少头牛吃126天?
72×25.2÷126+72×0.3=36(头)。
答:72公亩的牧草可供36头牛吃126天。
例4 一块草地,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者供80只羊吃12天.如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?
分析 由于1头牛每天的吃草量等于4只羊每天的吃草量,故60只羊每天的吃草量和15头牛每天吃草量相等,80只羊每天吃草量与20头牛每天吃草量相等。
解:60只羊每天吃草量相当多少头牛每天的吃草量?
60÷4=15(头)。
草地原有草量与20天新生长草量可供多少头牛吃一天?
16×20=320(头)。
80只羊12天的吃草量供多少头牛吃一天?
(80÷4)×12=240(头)。
每天新生长的草够多少头牛吃一天?
(320-240)÷(20-12)=10(头)。
原有草量够多少头牛吃一天?
320-(20×10)=120(头)。
原有草量可供10头牛与60只羊吃几天?
120÷(60÷4+10-10)=8(天)。
答:这块草场可供10头牛和60只羊吃8天。
例5 一水库原有存水量一定,河水每天均匀入库.5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干.若要求6天抽干,需要多少台同样的抽水机?
解:水库原有的水与20天流入水可供多少台抽水机抽1天?20×5=100(台)。
水库原有的水与15天流入的水可供多少台抽水机抽1天?6×15=90(台)。
每天流入的水可供多少台抽水机抽1天?
(100-90)÷(20-15)=2(台)。
原有的水可供多少台抽水机抽1天?
100-20×2=60(台)。
若6天抽完,共需抽水机多少台?
60÷6+2=12(台)。
答:若6天抽完,共需12台抽水机。
例6 有三片草场,每亩原有草量相同,草的生长速度也
设第三片草场(24亩)可供x头牛18周吃完,则由每头牛每周吃草量可列出方程为:
x=36
答:第三片草场可供36头牛18周食用。
这道题列方程时引入a、b两个辅助未知数.在解方程时不一定要求出其数值,在本题中只需求出它们的比例关系即可。
第七讲 行程问题
这一讲中,我们将要研究的是行程问题中一些综合性较强的题目.为此,我们需要先回顾一下已学过的基本数量关系:
路程=速度×时间;
总路程=速度和×时间;
路程差=速度差×追及时间。
例1 小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线,解完题时两针正好第一次重合.问:小明解这道题用了多长时间?
分析 这道题实际上是一个行程问题.开始时两针成一直线,最后两针第一次重合.因此,在我们所考察的这段时间内,两针的路程差为30分格,又因
分格/分钟,所以,当它们第一次重合时,一定是分针从后面追上时针.这是一个追及问题,追及时间就是小明的解题时间。
例2 甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。
画图如下:
分析 结合上图,如果我们设甲、乙在点C相遇时,丙在D点,则因为过15分钟后甲、丙在点E相遇,所以C、D之间的距离就等于(40+60)×15=1500(米)。
又因为乙和丙是同时从点B出发的,在相同的时间内,乙走到C点,丙才走到D点,即在相同的时间内乙比丙多走了1500米,而乙与丙的速度差为50-40=10(米/分),这样就可求出乙从B到C的时间为1500÷10=150(分钟),也就是甲、乙二人分别从A、B出发到C点相遇的时间是150分钟,因此,可求出A、B的距离。
解:①甲和丙15分钟的相遇路程:
(40+60)×15=1500(米)。
②乙和丙的速度差:
50-40=10(米/分钟)。
③甲和乙的相遇时间:
1500÷10=150(分钟)。
④A、B两地间的距离:
(50+60)×150=16500(米)=16.5千米。
答:A、B两地间的距离是16.5千米.
例3 甲、乙、丙是一条路上的三个车站,乙站到甲、丙两站的距离相等,小强和小明同时分别从甲、丙两站出发相向而行,小强经过乙站100米时与小明相遇,然后两人又继续前进,小强走到丙站立即返回,经过乙站300米时又追上小明,问:甲、乙两站的距离是多少米?
先画图如下:
分析 结合上图,我们可以把上述运动分为两个阶段来考察:
①第一阶段——从出发到二人相遇:
小强走的路程=一个甲、乙距离+100米,
小明走的路程=一个甲、乙距离-100米。
②第二阶段——从他们相遇到小强追上小明,小强走的路程=2个甲、乙距离-100米+300米=2个甲、乙距离+200米,
小明走的路程=100+300=400(米)。
从小强在两个阶段所走的路程可以看出:小强在第二阶段所走的路是第一阶段的2倍,所以,小明第二阶段所走的路也是第一阶段的2倍,即第一阶段应走400÷2=200(米),从而可求出甲、乙之间的距离为200+100=300(米)。
解略。
例4 甲、乙、丙三人进行200米赛跑,当甲到终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米?
分析 在相同的时间内,乙行了(200-20)=180(米),丙行了200-25
例5 甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。
先画图如下:
分析 若设甲、乙二人相遇地点为C,甲追及乙的地点为D,则由题意可知甲从A到C用6分钟.而从A到D则用26分钟,因此,甲走C到D之间的路程时,所用时间应为:(26-6)=20(分)。
同时,由上图可知,C、D间的路程等于BC加BD.即等于乙在6分钟内所走的路程与在26分钟内所走的路程之和,为50×(26+6)=1600(米).所以,甲的速度为1600÷20=80(米/分),由此可求出A、B间的距离。
解:50×(26+6)÷(26-6)=50×32÷20=80(米/分)
(80+50)×6=130×6=780(米)
答:A、B间的距离为780米。
例6 一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?
分析 要求汽车的发车时间间隔,只要求出汽车的速度和相邻两汽车之间的距离就可以了,但题目没有直接告诉我们这两个条件,如何求出这两个量呢?
由题可知:相邻两汽车之间的距离(以下简称间隔距离)是不变的,当一辆公共汽车超过步行人时,紧接着下一辆公共汽车与步行人之间的距离就是间隔距离,每隔6分钟就有一辆汽车超过步行人,这就是说:当一辆汽车超过步行人时,下一辆汽车要用6分钟才能追上步行人,汽车与行人的路程差就是相邻两汽车的间隔距离。
对于骑车人可作同样的分析.因此,如果我们把汽车的速度记作V汽,骑车人的速度为V自,步行人的速度为V人(单位都是米/分钟),则:
间隔距离=(V汽-V人)×6(米),
间隔距离=(V汽-V自)×10(米),
V自=3V人。
综合上面的三个式子,可得:V汽=6V人,即V人=1/6V汽,则:
间隔距离=(V汽-1/6V汽)×6=5V汽(米)
所以,汽车的发车时间间隔就等于:
间隔距离÷V汽=5V汽(米)÷V汽(米/分钟)=5(分钟)。
(解略)。
例7 甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?
分析 要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下:
①求出火车速度V车与甲、乙二人速度V人的关系,设火车车长为l,则:
(i)火车开过甲身边用8秒钟,这个过程为追及问题:故l=(V车-V人)×8;(1)
(ii)火车开过乙身边用7秒钟,这个过程为相遇问题:故l=(V车+V人)×7.(2)
由(1)、(2)可得:8(V车-V人)=7(V车+V人),
所以,V车=l5V人。
②火车头遇到甲处与火车头遇到乙处之间的距离是:
(8+5×6O)×(V车+V人)=308×16V人=4928V人。
③求火车头遇到乙时甲、乙二人之间的距离。
火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:4928V人-2(8+5×60)V人=4312V人。
④求甲、乙二人过几分钟相遇?
第八讲 流水行船问题
船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。
流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:
顺水速度=船速+水速,(1)
逆水速度=船速-水速.(2)
这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
根据加减法互为逆运算的关系,由公式(l)可以得到:
水速=顺水速度-船速,
船速=顺水速度-水速。
由公式(2)可以得到:
水速=船速-逆水速度,
船速=逆水速度+水速。
这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:
船速=(顺水速度+逆水速度)÷2,
水速=(顺水速度-逆水速度)÷2。
例1 甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
分析 根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出。
解:
顺水速度:208÷8=26(千米/小时)
逆水速度:208÷13=16(千米/小时)
船速:(26+16)÷2=21(千米/小时)
水速:(26—16)÷2=5(千米/小时)
答:船在静水中的速度为每小时21千米,水流速度每小时5千米。
例2 某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?
分析 要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
解:
从甲地到乙地,顺水速度:15+3=18(千米/小时),
甲乙两地路程:18×8=144(千米),
从乙地到甲地的逆水速度:15—3=12(千米/小时),
返回时逆行用的时间:144÷12=12(小时)。
答:从乙地返回甲地需要12小时。
例3 甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?
分析 要求帆船往返两港的时间,就要先求出水速.由题意可以知道,轮船逆流航行与顺流航行的时间和与时间差分别是35小时与5小时,用和差问题解法可以求出逆流航行和顺流航行的时间.并能进一步求出轮船的逆流速度和顺流速度.在此基础上再用和差问题解法求出水速。
解:
轮船逆流航行的时间:(35+5)÷2=20(小时),
顺流航行的时间:(35—5)÷2=15(小时),
轮船逆流速度:360÷20=18(千米/小时),
顺流速度:360÷15=24(千米/小时),
水速:(24—18)÷2=3(千米/小时),
帆船的顺流速度:12+3=15(千米/小时),
帆船的逆水速度:12—3=9(千米/小时),
帆船往返两港所用时间:
360÷15+360÷9=24+40=64(小时)。
答:机帆船往返两港要64小时。
下面继续研究两只船在河流中相遇问题.当甲、乙两船(甲在上游、乙在下游)在江河里相向开出,它们单位时间靠拢的路程等于甲、乙两船速度和.这是因为:
甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速。
这就是说,两船在水中的相遇问题与静水中的及两车在陆地上的相遇问题一样,与水速没有关系。
同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,也只与路程差和船速有关,与水速无关.这是因为:
甲船顺水速度-乙船顺水速度
=(甲船速+水速)-(乙船速+水速)
=甲船速-乙船速。
如果两船逆向追赶时,也有
甲船逆水速度-乙船逆水速度
=(甲船速-水速)-(乙船速-水速)
=甲船速-乙船速。
这说明水中追及问题与在静水中追及问题及两车在陆地上追及问题一样。
由上述讨论可知,解流水行船问题,更多地是把它转化为已学过的相遇和追及问题来解答。
例4 小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?
分析 此题是水中追及问题,已知路程差是2千米,船在顺水中的速度是船速+水速.水壶飘流的速度只等于水速,所以速度差=船顺水速度-水壶飘流的速度=(船速+水速)-水速=船速.
解:路程差÷船速=追及时间
2÷4=0.5(小时)。
答:他们二人追回水壶需用0.5小时。
例5 甲、乙两船在静水中速度分别为每小时24千米和每小时32千米,两船从某河相距336千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?
解:①相遇时用的时间
336÷(24+32)
=336÷56
=6(小时)。
②追及用的时间(不论两船同向逆流而上还是顺流而下):
336÷(32—24)=42(小时)。
答:两船6小时相遇;乙船追上甲船需要42小时。
㈧ 五年级上册奥数题及答案(简单的)
1.有一条长500米的环行跑道,甲乙两人同时从跑道上的某一点出发,如果反向而跑,则1分钟后相遇;如果同向而跑,则10分钟后追上以知甲比已跑的快,问:甲已两人每分钟各跑多少米?
答案:反向,二人的速度和是:500/1=500 同向,二人的速度差是:500/10=50
甲的速度是:(500+50)/2=275米/分 乙的速度是:(500-50)/2=225米/分
2.一个圆形跑道上,下午1:00,小明从A点,小强从B点同时出发相对而行,下午1:06两人相遇,下午1:10,小明到达B点,下午1:18,两人再次相遇问:小明环行一周要多少分钟?
答案:由题目得知,小强第一次相遇 前行了6分钟的距离小明行了4分钟,那么小明的速度是小强的:6/4=1。5倍。
又从第一次相遇 到第二次相遇 一共用了:18-6=12分。
所以小强的速度是:(1/12)/(1+1。5)=1/30 即小明的速度是:1/30*1。5=1/20
那么小明行一圈的时间是:1/(1/20)=20分
3.某中学七年级举行足球赛,规定:胜一场3分,平一场1分,负一场0分,七年1班比赛中共积8分,其中胜与平的场数相同,负比胜多1场,胜,平,负各几场?
答案:解:设胜的场数为x
3x+1x+0*(x+1)=8 4x=8 x=2 胜2场 平2场
负3场
4.xy,zw分别表示一个两位数,若xy+zw=139,那么x+y+z+w=?
答案:因为个位是9,所以个位相加没有进位个位 即:个位数的和Y+W=9,而不会是19,29,39 所以十位数的和X+Z=13于是:x+y+z+w=22
㈨ 五年级上册奥数题(不要太难!)
过桥问题(1)
1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?
分析:这道题求的是通过时间。根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。路程是用桥长加上车长。火车的速度是已知条件。
总路程: (米)
通过时间: (分钟)
答:这列火车通过长江大桥需要17.1分钟。
2. 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?
分析与解答:这是一道求车速的过桥问题。我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。
总路程: (米)
火车速度: (米)
答:这列火车每秒行30米。
3. 一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?
分析与解答:火车过山洞和火车过桥的思路是一样的。火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程。
总路程:
山洞长: (米)
答:这个山洞长60米。
和倍问题
1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?
我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?
(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)
(2)秦奋的年龄:40÷5=8岁
(3)妈妈的年龄:8×4=32岁
综合:40÷(4+1)=8岁 8×4=32岁
为了保证此题的正确,验证
(1)8+32=40岁 (2)32÷8=4(倍)
计算结果符合条件,所以解题正确。
2. 甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少?
已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和。看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度。
甲乙飞机的速度分别每小时行800千米、400千米。
3. 弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?
思考:(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么?
(2)要想求哥哥给弟弟多少本课外书,需要知道什么条件?
(3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍?
思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书。根据条件需要先求出哥哥剩下多少本课外书。如果我们把哥哥剩下的课外书看作1倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2倍,也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3倍,而兄弟俩人课外书的总数始终是不变的数量。
(1)兄弟俩共有课外书的数量是20+25=45。
(2)哥哥给弟弟若干本课外书后,兄弟俩共有的倍数是2+1=3。
(3)哥哥剩下的课外书的本数是45÷3=15。
(4)哥哥给弟弟课外书的本数是25-15=10。
试着列出综合算式:
4. 甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?
根据甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,可求出这时甲、乙两库共存粮多少吨。根据“这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1倍,那么甲、乙库所存粮就相当于乙存粮的3倍。于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨。最后就可求出甲库原来存粮多少吨。
甲库原存粮130吨,乙库原存粮40吨。
列方程组解应用题(一)
1. 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?
依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数,一个是制盒底的铁皮张数,这样就可以用两个未知数表示,要求出这两个未知数,就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组。
两个等量关系是:A做盒身张数+做盒底的张数=铁皮总张数
B制出的盒身数×2=制出的盒底数
用86张白铁皮做盒身,64张白铁皮做盒底。
奇数与偶数(一)
其实,在日常生活中同学们就已经接触了很多的奇数、偶数。
凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。
因为偶数是2的倍数,所以通常用 这个式子来表示偶数(这里 是整数)。因为任何奇数除以2其余数都是1,所以通常用式子 来表示奇数(这里 是整数)。
奇数和偶数有许多性质,常用的有:
性质1 两个偶数的和或者差仍然是偶数。
例如:8+4=12,8-4=4等。
两个奇数的和或差也是偶数。
例如:9+3=12,9-3=6等。
奇数与偶数的和或差是奇数。
例如:9+4=13,9-4=5等。
单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。
性质2 奇数与奇数的积是奇数。
偶数与整数的积是偶数。
性质3 任何一个奇数一定不等于任何一个偶数。
1. 有5张扑克牌,画面向上。小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?
同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。
5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数。
所以无论他翻动多少次,都不能使5张牌画面都向下。
2. 甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒。那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?
不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子。
如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个。否则甲盒子中的黑子数不变。也就是说,李平每次从甲盒子拿出的黑子数都是偶数。由于181是奇数,奇数减偶数等于奇数。所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子。
奥赛专题 -- 称球问题
例1 有4堆外表上一样的球,每堆4个。已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。
解 :依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。
2 有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。
解 :第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。
第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。
第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。
例3 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。
解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。把A、B两组分别放在天平的两个盘上去称,则
(1)若A=B,则A、B中都是正品,再称B、C。如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。如B<C,仿照B>C的情况也可得出结论。
(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。
(3)若A<B,类似于A>B的情况,可分析得出结论。
奥赛专题 -- 抽屉原理
【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么?
【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。
【例 2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么?
【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。
【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?
【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。
按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双。拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走。如果再补进2只,又可取得第3双。所以,至少要取6+2+2=10只袜子,就一定会配成3双。
思考:1.能用抽屉原理2,直接得到结果吗?
2.把题中的要求改为3双不同色袜子,至少应取出多少只?
3.把题中的要求改为3双同色袜子,又如何?
【例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?
【分析与解】从最“不利”的取出情况入手。
最不利的情况是首先取出的5个球中,有3个是蓝色球、2个绿色球。
接下来,把白、黄、红三色看作三个抽屉,由于这三种颜色球相等均超过4个,所以,根据抽屉原理2,只要取出的球数多于(4-1)×3=9个,即至少应取出10个球,就可以保证取出的球至少有4个是同一抽屉(同一颜色)里的球。
故总共至少应取出10+5=15个球,才能符合要求。
思考:把题中要求改为4个不同色,或者是两两同色,情形又如何?
当我们遇到“判别具有某种事物的性质有没有,至少有几个”这样的问题时,想到它——抽屉原理,这是你的一条“决胜”之路。
奥赛专题 -- 还原问题
【例1】某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元。这时他的存折上还剩1250元。他原有存款多少元?
【分析】从上面那个“重新包装”的事例中,我们应受到启发:要想还原,就得反过来做(倒推)。由“第二次取余下的一半多100元”可知,“余下的一半少100元”是1250元,从而“余下的一半”是 1250+100=1350(元)
余下的钱(余下一半钱的2倍)是: 1350×2=2700(元)
用同样道理可算出“存款的一半”和“原有存款”。综合算式是:
[(1250+100)×2+50]×2=5500(元)
还原问题的一般特点是:已知对某个数按照一定的顺序施行四则运算的结果,或把一定数量的物品增加或减少的结果,要求最初(运算前或增减变化前)的数量。解还原问题,通常应当按照与运算或增减变化相反的顺序,进行相应的逆运算。
【例2】有26块砖,兄弟2人争着去挑,弟弟抢在前面,刚摆好砖,哥哥赶来了。哥哥看弟弟挑得太多,就拿来一半给自己。弟弟觉得自己能行,又
从哥哥那里拿来一半。哥哥不让,弟弟只好给哥哥5块,这样哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?
【分析】我们得先算出最后哥哥、弟弟各挑多少块。只要解一个“和差问题”就知道:哥哥挑“(26+2)÷2=14”块,弟弟挑“26-14=12”块。
提示:解还原问题所作的相应的“逆运算”是指:加法用减法还原,减法用加法还原,乘法用除法还原,除法用乘法还原,并且原来是加(减)几,还原时应为减(加)几,原来是乘(除)以几,还原时应为除(乘)以几。
对于一些比较复杂的还原问题,要学会列表,借助表格倒推,既能理清数量关系,又便于验算。
奥赛专题 -- 鸡兔同笼问题
例1 鸡兔同笼,头共46,足共128,鸡兔各几只?
[分析] :如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:鸡有28只,免有18只。
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
[分析]: 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?
假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。
解:(2×100-80)÷(2+4)=20(只)。
100-20=80(只)。
答:鸡与兔分别有80只和20只。
例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?
[分析1] 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。
结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年级一班、 二班、三班分别有44人、 49人和 42人。
[分析2] 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年级一班、二班、三班分别有44人、49人和42人。
例4 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?
[分析] 我们分步来考虑:
①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。
②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。
③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。
解:[6×10-(41+1)÷(6-4)
= 18÷2=9(条) 10-9=1(条)
答:有9条小船,1条大船。
例5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?
[分析] 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为 6×18=108(条),所差 118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).
解:①假设蜘蛛也是6条腿,三种动物共有多少条腿?
6×18=108(条)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蝉共有多少只?
18-5=13(只)
④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7只.
㈩ 五年级上册数学奥数题
一、解答题(共21小题,满分100分)
1.(4分)共有1428个网球,每5个装一筒,装完后还剩3个,一共装了多少筒?
2.(4分)故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米.天安门广场的面积多少万平方米?
3.(4分)宁夏的同心县是一个“干渴”的地区,年平均蒸发量是2325mm,比年平均降水量的8倍还多109mm,同心县的年平均降水量多少毫米?
4.(4分)猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km.大象最快能达到每小时多少千米?
5.(4分)世界上最大的洲是亚洲,面积是4400万平方千米,比大洋洲面积的4倍还多812万平方千米.大洋洲的面积是多少万平方千米?
6.(4分)大楼高29.2米,一楼准备开商店,层高4米,上面9层是住宅.住宅每层高多少米?
7.(4分)太阳系的九大行星中,离太阳最近的是水星.地球绕太阳一周是365天,比水星绕太阳一周所用时间的4倍还多13天,水星绕太阳一周是多少天?
8.(4分)地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍.地球上的海洋面积和陆地面积分别是多少亿平方千米?
9.(4分)6个易拉罐、9个饮料瓶,每个价钱都一样,一共可得到1.5元,每个多少元?(列方程解)
10.(4分)两个相邻自然数的和是97,这两个自然分别是多少?
11.(5分)鸡和兔的数量相同,两种动物的腿加起来共有48条.鸡和兔各有多少只?
12.(5分)妈妈今年的年龄儿子的3倍,妈妈比儿子大24岁.儿子和妈妈今年分别是多少岁?
13.(5分)我买了两套丛书,单价分别是:<<科学家>>2.5元/本,<<发明家>>3元/本,两套丛书的本数相同,共花了22元.每套丛书多少本?
14.(5分)一幅油画的长是宽的2倍,我做画框用了1.8m木条.这幅画的长、宽、面积分别是多少?
15.(5分)小明和小红在校门口分手后,7分钟后他们同时到家,小明平均每分钟走45米,小红平均每分钟走多少米?(列方程解)
16.(5分)小明的玻璃球是小刚的2倍,小明给小刚3颗,他俩就一样多了.他们两个人分别有多少颗玻璃球?
18.(6分)一个数乘0.75等于6个2.4相加的和,这个数是多少?
19.(6分)甲、乙两地的公路长285千米,客、货两车分别从甲、乙两地同时出发,相向而行,经过3小时两车相遇.已知客车每小时行45千米,货车每小时行多少千米?
20.(6分)张老师第一次到体育用品商店买了24套运动服,第二次又买了同样的运动服30套,第二次比第一次多付了510元.每套运动服多少元?
21.(6分)一个长方形周长50米,长与宽的比是3:2,这个长方形的长是_________米.