马柯威茨模型的假设条件包括
1. Creditmetrics模型的基本思想
1、信用风险取决于债务人的信用状况,而企业的信用状况由被评定的信用等示。因此,信用计量模型认为信用风险可以说直接源自企业信用等级的变化,并假定信用评级体系是有效的,即企业投资失败、利润下降、融资渠道枯竭等信用事件对其还款履约能力的影响都能及时恰当地通过其信用等级的变化而表现出来。信用计量模型的基本方法就是信用等级变化分析。转换矩阵(Transition Matrix一般由信用评级公司提供),即所有不同信用等级的信用工具在一定期限内变化(转换)到其他信用等级或维持原级别的概率矩阵,成为该模型重要的输入数据。
2、信用工具(包括债券和贷款等)的市场价值取决于债务发行企业的信用等级,即不同信用等级的信用工具有不同的市场价值,因此,信用等级的变化会带来信用工具价值的相应变化。根据转换矩阵所提供的信用工具信用等级变化的概率分布,同时根据不同信用等级下给定的贴现率就可以计算出该信用工具在各信用等级上的市场价值(价格),从而得到该信用工具市场价值在不同信用风险状态下的概率分布。这样就达到了用传统的期望和标准差来衡量资产信用风险的目的,也可以在确定的置信水平上找到该信用资产的信用值,从而将Var的方法引入到信用风险管理中来。
3、信用计量模型的一个基本特点就是从资产组合而并不是单一资产的角度来看待信用风险。根据马柯威茨资产组合管理理论,多样化的组合投资具有降低非系统性风险的作用,信用风险很大程度上是一种非系统性风险,因此,在很大程度上能被多样性的组合投资所降低。另一方面,由于经济体系中共同的因素(系统性因素)的作用,不同信用工具的信用状况之间存在相互联系,由此而产生的系统性风险是不能被分散掉的。这种相互联系由其市场价值变化的相关系数(这种相关系数矩阵一般也由信用评级公司提供)表示。由单一的信用工具市场价值的概率分布推导出整个投资组合的市场价值的概率分布可以采取马柯威茨资产组合管理分析法。
4、由于信用计量模型将单一的信用工具放入资产组合中衡量其对整个组合风险状况的作用,而不是孤立地衡量某一信用工具自身的风险,因而,该模型使用了信用工具边际风险贡献这样的概念来反映单一信用工具对整个组合风险状况的作用。边际风险贡献是指在组合中因增加某一信用工具的一定持有量而增加的整个组合的风险(以组合的标准差表示)。通过对比组合中各信用工具的边际风险贡献,进而分析每种信用工具的信用等级、与其他资产的相关系数以及其风险暴露程度等各方面因素,可以很清楚地看出各种信用工具在整个组合的信用风险中的作用,最终为投资者的信贷决策提供科学的量化依据。
2. "马柯威茨的均值方差模型"是什么意思
马科维茨的均值一方差组合模型简介
证券及其它风险资产的投资首先需要解决的是两个核心问题:即预期收益与风险。
那么如何测定组合投资的风险与收益和如何平衡这两项指标进行资产分配是市场投资者迫切需要解决的问题。正是在这样的背景下,在50年代和60年代初,马可维兹理论应运而生。
马科维茨模型的假设条件
该理论依据以下几个假设:
1、投资者在考虑每一次投资选择时,其依据是某一持仓时间内的证券收益的概率分布。
2、投资者是根据证券的期望收益率估测证券组合的风险。
3、投资者的决定仅仅是依据证券的风险和收益。
4、在一定的风险水平上,投资者期望收益最大;相对应的是在一定的收益水平上,投资者希望风险最小。
根据以上假设,马可维兹确立了证券组合预期收益、风险的计算方法和有效边界理论,建立了资产优化配置的均值-方差模型:
目标函数:minб2(rp)=∑
∑xixjCov(ri-rj)
rp=
∑
xiri
限制条件:
1=∑Xi
(允许卖空)
或
1=∑Xi
xi>≥0(不允许卖空)
其中rp为组合收益,
ri为第i只股票的收益,xi、
xj为证券
i、j的投资比例,б2(rp)为组合投资方差(组合总风险),Cov
(ri
、rj
)
为两个证券之间的协方差。该模型为现代证券投资理论奠定了基础。上式表明,在限制条件下求解Xi证券收益率使组合风险б2(rp
)最小,可通过朗格朗日目标函数求得。其经济学意义是,投资者可预先确定一个期望收益,通过上式可确定投资者在每个投资项目(如股票)上的投资比例(项目资金分配),使其总投资风险最小。不同的期望收益就有不同的最小方差组合,这就构成了最小方差集合。
马科维茨模型的意义
马科维茨的投资组合理论不仅揭示了组合资产风险的决定因素,而且更为重要的是还揭示了“资产的期望收益由其自身的风险的大小来决定”这一重要结论,即资产价格(单个资产和组合资产)由其风险大小来定价,单个资产价格由其方差或标准差来决定,组合资产价格由其协方差来决定。马可维茨的风险定价思想在他创建的“均值-方差”或“均值-标准差”二维空间中投资机会集的有效边界上表现得最清楚。下文在“均值-标准差”二维空间中给出投资机会集的有效边界,图形如下:
上面的有效边界图形揭示出:单个资产或组合资产的期望收益率由风险测度指标标准差来决定;风险越大收益率越高,风险越小收益率越低;风险对收益的决定是非线性(二次)的双曲线(或抛物线)形式,这一结论是基于投资者为风险规避型这一假定而得出的。具体的风险定价模型为:
(5)
其中
,且A,B,C,D为常量;R表示N个证券收益率的均值(期望)列向量,Ω为资产组合协方差矩阵,1表示分量为1的N维列向量,上标T表示向量(矩阵)转置(公式(5)的推导过程。
马科维茨均值一方差组合模型的优缺点
马可维茨的风险定价思想和模型具有开创意义,奠定了现代金融学、投资学乃至财务管理学的理论基础。不过这种理论也有缺点,就是他的数学模型较为复杂,不便于实际操作。
3. "马柯威茨的均值方差模型"是什么意思
马柯威茨的均值方差模型是建立在两个假设之上的: 假设一,投资者以期望收益率(亦称收益率均值)来衡量未来实际收益率的总体水平,以收益率的方差(或标准差)来衡量收益率的不确定性(风险),因而投资者在决策中只关心投资的期望收益率和方差。 假设二,投资者是不知足的和厌恶风险的,即投资者总是希望期望收益率越高越好,而方差越小越好。 马柯威茨均值方差模型就是在上述两个假设下导出投资者只在有效边界上选择证券组合,并提供确定有效边界的技术路径的一个数理模型。 而资本资产定价模型(CAPM)是马柯威茨的均值方差模型的一个衍生应用。 模型可以表示为: E(R)= Rf+ [E(Rm)- Rf] ×β 其中,E(R)为股票或投资组合的期望收益率,Rf为无风险收益率,投资者能以这个利率进行无风险的借贷,E(Rm)为市场组合的收益率,β是股票或投资组合的系统风险测度。 从模型当中,我们可以看出,资产或投资组合的期望收益率取决于三个因素:(1)无风险收益率Rf,一般将一年期国债利率或者银行三个月定期存款利率作为无风险利率,投资者可以以这个利率进行无风险借贷;(2)风险价格,即[E(Rm)- Rf],是风险收益与风险的比值,也是市场组合收益率与无风险利率之差;(3)风险系数β,是度量资产或投资组合的系统风险大小尺度的指标,是风险资产的收益率与市场组合收益率的协方差与市场组合收益率的方差之比,故市场组合的风险系数β等于1。 资本资产定价模型是第一个关于金融资产定价的均衡模型,同时也是第一个可以进行计量检验的金融资产定价模型。模型的首要意义是建立了资本风险与收益的关系,明确指明证券的期望收益率就是无风险收益率与风险补偿两者之和,揭示了证券报酬的内部结构。 资本资产定价模型另一个重要的意义是,它将风险分为非系统风险和系统风险。非系统风险是一种特定公司或行业所特有的风险,它是可以通过资产多样化分散的风险。系统风险是指由那些影响整个市场的风险因素引起的,是股票市场本身所固有的风险,是不可以通过分散化消除的风险。资本资产定价模型的作用就是通过投资组合将非系统风险分散掉,只剩下系统风险。并且在模型中引进了β系数来表征系统风险。 而特征线模型只是资本资产定价模型(CAPM)的另一种称法,把资本资产定价模型(CAPM)的公式在坐标系中用均线法画出来就是所谓的特征线模型。其好处当然是更直观,就像解析几何一样。 因素模型是描述证券收益率生成过程的一种模型,建立在证券关联性基础上。认为证券间的关联性是由于某些共同因素的作用所致,不同证券对这些共同的因素有不同的敏感 度。这些对所有证券的共同因素就是系统性风险。因素模型正是抓住了对这些系统影响对证券收益的影响,并用一种线性关系来表示。 因素模型中的因素常以指数形式出现(如GNP指数、股价指数、物价指数等),所以又称为指数模型。 单因素模型相对CAPM是为了解决两个问题,一是提供一种简化地应用CAPM的方式;二是细分影响总体市场环境变化的宏观因素,如国民收入、通胀率、利率、能源价格等具体带来风险的因素因素模型。 套利定价理论导出了与资本资产定价模型相似的一种市场关系。套利定价理论以收益率形成过程的多因子模型为基础,认为证券收益率与一组因子线性相关,这组因子代表证券收益率的一些基本因素。事实上,当收益率通过单一因子(市场组合)形成时,将会发现套利定价理论形成了一种与资本资产定价模型相同的关系。因此,套利定价理论可以被认为是一种广义的资本资产定价模型,为投资者提供了一种替代性的方法,来理解市场中的风险与收益率间的均衡关系。套利定价理论与现代资产组合理论、资本资产定价模型、期权定价模型等一起构成了现代金融学的理论基础。 以上回答为大部分原创,其中关于APT的部分参照了一下wikipedia的解答。不足之处,望海涵。