发生无焰燃烧必须具备的条件是
⑴ 物质得以燃烧的唯一条件是可燃物与氧化剂作用并达到一定数量的比例对吗
物质燃烧过程的发复生和发展制,必须具备以下三个必要条件,即:可燃物、氧化剂和温度(引火源)。只有这三个条件同时具备,才可能发生燃烧现象,无论哪一个条件不满足,燃烧都不能发生。但是,并不是上述三个条件同时存在,就一定会发生燃烧现象,还必须这三个因素相互作用才能发生燃烧。
用燃烧三角形(图1-1)来表示无焰燃烧的基本条件是非常确切的,但是进一步研究表明,对有焰燃烧,由于过程中存在未受抑制的游离基(自由基)作中间体,因而燃烧三角形需要增加一个坐标,形成四面体(图1-2)。自由基是一种高度活泼的化学基团,能与其他的自由基和分子起反应,从而使燃烧按链式反应扩展,所以有焰燃烧的发生需要四个必要条件,即:可燃物、氧化剂、温度(引火源)和未受抑制的链式反应。
图1-1燃烧三角形
图1-2燃烧四面体
可燃物
凡是能与空气中的氧或其他氧化剂发生燃烧化学反应的物质称为可燃物。可燃物按其物理状态分为气体可燃物、液体可燃物和固体可燃物三种类别。可燃烧物质大多是含碳和氢的化合物,某些金属如钙、镁、铝等在某些条件下也可以燃烧,还有许多物质如肼、臭氧等在高温下可以通过自己的分解而放出光和热。
⑵ 燃烧的必要条件是什么
可燃物、氧化剂和点火源,称为燃烧三要素,当这三个要素同时具备并相互回作用时就会产生燃烧。答燃烧的充分条件指燃烧发生需要的必要条件达到一定量的要求,并且存在相互作用的过程。对于有焰燃烧,还包括未受抑制的链式反应。
(2)发生无焰燃烧必须具备的条件是扩展阅读:
燃烧的三要素
1、可燃物:指能与空气中的氧或其他氧化剂起燃烧反应的物质,如木材、纸张、布料等。可燃物中有一些物品,遇到明火特别容易燃烧,称为易燃物品,常见的有汽油、酒精、液化石油气等。
2、助燃物:能帮助和支持可燃物质燃烧的物质,即能与可燃物发生氧化反应的物质,如空气、氧气。
3、着火源:指供给可燃物与助燃剂发生燃烧反应能量的来源。除明火外,电火花、摩擦、撞击产生的火花及发热,造成自燃起火的氧化热等物理化学因素都能成为着火源。
⑶ 有了燃烧的三要素一定会燃烧吗 问下而已
燃烧的必要条件
任何物质发生燃烧都必须具备以下三个条件:可燃物、氧化剂和温度(引火源).
三者缺一不可,三者的关系可用燃烧三角形来表示.以上仅能代表无焰燃烧,我们平时所指的绝大部分燃烧均指的是有焰燃烧,有焰燃烧必须具备四个必要条件:可燃物、氧化剂、温度和未受抑制的链式反应.燃烧的充分条件
具备了燃烧的必要条件,并不意味着燃烧必然会发生,燃烧还必须具备以下四个充分条件:一定的可燃物浓度,一定的氧含量,一定的点火热量,未受抑制的链式反应.以上即为燃烧的充分必要条件,灭火剂的灭火机理即为去掉其中的一个或几个条件,使燃烧中断.
⑷ 物质有焰燃烧的必要条件是什么
燃烧的必要条件
任何物质发生燃烧都必须具备以下三个条件:可燃物、氧化剂和温度(引火源)。
以上仅能代表无焰燃烧,我们平时所指的绝大部分燃烧均指的是有焰燃烧,有焰燃烧必须具备四个必要条件:可燃物、氧化剂、温度和未受抑制的链式反应。
燃烧的充分条件
具备了燃烧的必要条件,并不意味着燃烧必然会发生,燃烧还必须具备以下四个充分条件:一定的可燃物浓度,一定的氧含量,一定的点火热量,未受抑制的链式反应。以上即为燃烧的充分必要条件,灭火剂的灭火机理即为去掉其中的一个或几个条件,使燃烧中断。
可燃物与氧化剂作用而发生的放热反应,通常伴有火焰,发光或发烟的现象称为燃烧。
2.燃烧的必要条件
任何物质发生燃烧都必须具备以下三个条件:可燃物、氧化剂和温度(引火源)。三者缺一不可,三者的关系可用燃烧三角形来表示。以上仅能代表无焰燃烧,我们平时所指的绝大部分燃烧均指的是有焰燃烧,有焰燃烧必须具备四个必要条件:可燃物、氧化剂、温度和未受抑制的链式反应。
3.燃烧的充分条件
具备了燃烧的必要条件,并不意味着燃烧必然会发生,燃烧还必须具备以下四个充分条件:一定的可燃物浓度,一定的氧含量,一定的点火热量,未受抑制的链式反应。以上即为燃烧的充分必要条件,灭火剂的灭火机理即为去掉其中的一个或几个条件,使燃烧中断。
4.燃烧机理
下面我们以聚合物为例来阐述燃烧的机理和过程,有机物聚合物的燃烧大致分为以下五个不同的阶段。
(1)加热阶段:由外部热源产生的热量给予聚合物,使聚合物的温度升高,升温的速度取决于外界热源供给能量的多少,接触聚合物的体积大小,火焰温度的高低,同时也取决于聚合物的导热容和导热系数。
(2)降解阶段
聚合物被加热到一定温度后,聚合物分子中最弱的键断裂,即发生降解,这一阶段取决于该键的键能大小,不同共价键能的大小见表3-3。
表3-3
不同共价健的键能
键
键能k/mol
键
键能k/mol
O-O
146.7
C-H
414.8
C-N
805.9
O-H
465.1
C-Cl
339.4
C-F
431.6-515.4
C-C
347.8
C=C
611.7
C-O
360.3
C=O
750.9
N-H
389.7
C=N
892.5
由表3-1可以看出,O-O键是最弱的键,极易断裂;C=N健是最强的键,不易断裂。
(3)分解阶段
当温度上升到一定程度时,除弱键断裂外,强健也开始断裂,即发生裂解,产生低分子化合物。一般包括(1)可燃体:H2、CH4、C2H6、CH2O、CH2COCH2、CO等;(2)不燃性气体:CO2、HCl、HBr等;(3)液态产物:聚合物部分解聚为液态产物;(4)固态产物:聚合物可部分焦化为焦碳,也可不完全燃烧产生危害很大的烟雾。
聚合物不同其分解产物的组成也不同,但大多数为可燃烃类,而且所产生的气体多是有毒或有腐蚀性的。
(4)点燃阶段
当分解阶段所产生的可燃性气体达到一定浓度,且温度也达到其燃点或闪点,并有足够的氧或氧化剂存在时,开始出现火焰,这就是点燃,燃烧从此开始。
(5)燃烧阶段
燃烧释放出的能量使活性游离基引起链式反应,不断提供可燃物质,使燃烧自动传播和扩散,火焰愈来愈大,其反应过程用方程表示如下:
RH→R·+H·
H·+O2→HO·+O·
R·+O2→R1CHO+OH·
OH·+RH→R·+H2O
⑸ 燃烧的本质和条件
燃烧是一种放热发光的化学反应,其反应过程极其复杂,游离基的链锁反应是燃烧反应的实质,光和热是燃烧过程中发生的物理现象。
可燃物与氧气或空气进行的快速放热和发光的氧化反应,并以火焰的形式出现。 煤、石油、天然气的燃烧是国民经济各个部门的主要热能 动力的来源。近世对能源需求的激增和航天技术的迅速 发展,促进了流体力学,化学反应动力学、传热传质学的 结合,使燃烧学科有了飞跃的发展;另一方面以消灭燃烧 为目的的防火技术的发展也促进了燃烧理论的研究。
在燃烧过程中,燃料、氧气和燃烧产物三者之间进行 着动量、热量和质量传递,形成火焰这种有多组分浓度梯 度和不等温两相流动的复杂结构。火焰内部的这些传递 借层流分子转移或湍流微团转移来实现,工业燃烧装置 屮则以湍流微团转移为主。探索燃烧室内的速度、浓度、 温度分布的规律以及它们之间的相互影响是从流体力学 角度研究燃烧过程的重要内容。由于燃烧过程的复杂性, 实验技术是探讨燃烧工程的主要手段。近年来发展起来 的计算燃烧学,通过建立燃烧过程的物理模型对动量、能 量、化学反应等微分方程组进行数值求解,从而使对燃烧设备内的流场、燃料的着火和燃烧传热过程、火焰的稳定 等工程问题的研充取得明显的进展。
燃烧三要素
物质燃烧需要同时具备可燃物、助燃物和着火源这三要素。而燃烧的充分条件是有一定的可燃物浓度、一定的助燃物浓度。
可燃物与助燃物
可燃物就是能与空气中的氧或其他氧化剂其燃烧反应的物质,如木材、纸张。助燃物是指能与可燃物发生氧化反应的物质,如空气、氧气。可燃物必须有一定的起始能量,达到一定的温度和浓度,才能产生足够快的反应速度而着火。
在燃烧过程中,燃料、氧气和燃烧产物三者之间进行 着动量、热量和质量传递,形成火焰这种有多组分浓度梯 度和不等温两相流动的复杂结构。
⑹ 什么叫做“有焰燃烧”“无焰燃烧”和“辉焰燃烧”
当使用燃料油时,油复被雾化制蒸发,往往附着在料粉颗粒表面迅速燃烧,形成无焰燃烧。这种燃烧对抽物料传热是极为有利的。 分解炉内无焰燃烧的优点是燃料均匀分散,能充分利用燃烧空间而不易形成局部高温,有利于全炉温度均布及较高的发热能力。物料能均匀分散于许多小火焰之间,放热与吸热相适应,既有利于向物料传热,又有利于防止气流温度过高,能很好地满足物料中碳酸盐分解的工艺与热工条件。当分解阶段所产生的可燃性气体达到一定浓度,且温度也达到其燃点或闪点,并有足够的氧或氧化剂存在时,开始出现火焰,这就是点燃,燃烧从此开始。燃烧释放出的能量使活性游离基引起链式反应,不断提供可燃物质,使燃烧自动传播和扩散,火焰愈来愈大。
⑺ 燃烧应具备哪些条件
物质燃烧必须具备以下三个基本条件:
(1)可燃物:不论固体,液体和气体,凡能与空气中氧或其它氧化剂起剧烈反应的物质,一般都是可燃物质,如木材,纸张,汽油,酒精,煤气等。
(2)助燃物:凡能帮助和支持燃烧的物质叫助燃物。一般指氧和氧化剂,主要是指空气中的氧。这种氧称为空气氧,在空气中约占21%。可燃物质没有氧参加化合是不会燃烧的。如燃烧1公斤石油就需要10-12立方米空气。燃烧1公斤木材就需要4-5立方米空气。当空气供应不足时,燃烧会逐渐减弱,直至熄灭。当空气的含氧量低于14-18%时,就不会发生燃烧。
(3)火源:凡能引起可燃物质燃烧的能源都叫火源,如明火,摩擦,冲击,电火花等等。
具备以上三个条件,物质才能燃烧。例如生火炉,只有具备了木材(可燃物),空气(助燃物),火柴(火源)三个条件,才能使火炉点燃。
⑻ 阴燃为什么不算燃烧,怎样才能阴燃、阴燃的条件及物质有哪些
"1、没有火焰的缓慢燃烧现象称为阴燃。很多固体物质,如纸张、锯末、纤维织物、纤维素板、胶乳橡胶以及某些多孔热固性塑料等,都有可能发生阴燃,特别是当它们堆积起来的时候。阴燃是固体燃烧的一种形式,是无可见光的缓慢燃烧,通常产生烟和温度上升等现象,它与有焰燃烧的区别是无火焰,它与无焰燃烧的区别是能热分解出可燃气,因此在一定条件下阴燃可以转换成有焰燃烧。
2、(1) 发生阴燃的内部条件是,可燃物必须是受热分解后能产生刚性结构的多孔碳的固体物质。如果可燃物受热分解产生的非刚性结构的碳,如流动焦油状的产物,就不能发生阴燃。这说明,产物的分子结构和原材料热解方式在决定物质燃烧特征中起着十分重要的作用。由丙烯腈和苯乙烯接枝的多元醇制得的柔性泡沫材料,在高温下产生刚性很强的碳,故而很容易进行阴燃。而纯纤维受热时产生很少的碳,因此不易发生阴燃。
(2) 发生阴燃的外部条件是有一个适合供热强度的热源。所谓适合的供热强度是指能够发生阴燃的适合温度和一个适合的供热速率。
假定阴燃过程中,活性物、焦炭和灰三种物质的密度是恒定的,但它们各自占固体质量的份额随阴燃而改变,确定了阴燃过程固体颗粒的体积收缩速率及填充空隙率变化数学模型.对上方具有空气掠过的水平纤维质填充床,从点火到稳态传播的阴燃过程进行了模拟计算.计算结果表明,空隙率随阴燃过程增大,从而加快了阴燃传播速度,提高了其峰值温度.水平填充床表面下沉所引起的固-固辐射换热在阴燃模拟计算中则可以忽略不计。
阴燃向有焰燃烧转变,有以下几种条件:1阴燃从堆垛内部传播到外部时,由于不再缺氧,可转变为有焰燃烧。2密闭空间内,因供氧不足,固体材料发生阴燃,并产生大量不完全燃烧产物充满空间,当突然打开空间某些部位,新鲜空气进入,在空间内形成可燃混合气体,进而发生有焰燃烧或导致爆炸。这种由阴燃向爆燃的突发性转变十分危险。"
⑼ 燃烧分为哪些类型
燃烧的充分条件有以下四条:一定的可燃物浓度;一定的氧气含量;一定的点火能量内;未受抑制的链式反应容。对于无焰燃烧,前三个条件同时存在,相互作用,燃烧过程中存在未受抑制的游离基(自由基),形成链式反应,使燃烧能够持续下去。燃烧按其形成的条件和瞬间发生的特点一般分为闪燃、着火、自燃和爆炸四种类型。闪燃是物质遇火能产生一闪即灭的燃烧现象。
⑽ 完全燃烧的四要素
可燃物与氧化剂作用而发生的放热反应,通常伴有火焰,发光或发烟的现象称为燃烧。
2.燃烧的必要条件
任何物质发生燃烧都必须具备以下三个条件:可燃物、氧化剂和温度(引火源)。
三者缺一不可,三者的关系可用燃烧三角形来表示。
以上仅能代表无焰燃烧,我们平时所指的绝大部分燃烧均指的是有焰燃烧,有焰燃烧必须具备四个必要条件:可燃物、氧化剂、温度和未受抑制的链式反应。
3.燃烧的充分条件
具备了燃烧的必要条件,并不意味着燃烧必然会发生,燃烧还必须具备以下四个充分条件:一定的可燃物浓度,一定的氧含量,一定的点火热量,未受抑制的链式反应。以上即为燃烧的充分必要条件,灭火剂的灭火机理即为去掉其中的一个或几个条件,使燃烧中断。
4.燃烧机理
下面我们以聚合物为例来阐述燃烧的机理和过程,有机物聚合物的燃烧大致分为以下五个不同的阶段。
(1)加热阶段:由外部热源产生的热量给予聚合物,使聚合物的温度升高,升温的速度取决于外界热源供给能量的多少,接触聚合物的体积大小,火焰温度的高低,同时也取决于聚合物的导热容和导热系数。
(2)降解阶段
聚合物被加热到一定温度后,聚合物分子中最弱的键断裂,即发生降解,这一阶段取决于该键的键能大小,不同共价键能的大小见表3-3。
表3-3
不同共价健的键能
键
键能k/mol
键
键能k/mol
O-O
146.7
C-H
414.8
C-N
805.9
O-H
465.1
C-Cl
339.4
C-F
431.6-515.4
C-C
347.8
C=C
611.7
C-O
360.3
C=O
750.9
N-H
389.7
C=N
892.5
由表3-1可以看出,O-O键是最弱的键,极易断裂;C=N健是最强的键,不易断裂。
(3)分解阶段
当温度上升到一定程度时,除弱键断裂外,强健也开始断裂,即发生裂解,产生低分子化合物。一般包括(1)可燃体:H2、CH4、C2H6、CH2O、CH2COCH2、CO等;(2)不燃性气体:CO2、HCl、HBr等;(3)液态产物:聚合物部分解聚为液态产物;(4)固态产物:聚合物可部分焦化为焦碳,也可不完全燃烧产生危害很大的烟雾。
聚合物不同其分解产物的组成也不同,但大多数为可燃烃类,而且所产生的气体多是有毒或有腐蚀性的。
(4)点燃阶段
当分解阶段所产生的可燃性气体达到一定浓度,且温度也达到其燃点或闪点,并有足够的氧或氧化剂存在时,开始出现火焰,这就是点燃,燃烧从此开始。
(5)燃烧阶段
燃烧释放出的能量使活性游离基引起链式反应,不断提供可燃物质,使燃烧自动传播和扩散,火焰愈来愈大,其反应过程用方程表示如下:
RH→R·+H·
H·+O2→HO·+O·
R·+O2→R1CHO+OH·
OH·+RH→R·+H2O