生活数学故事400字五年级
㈠ 五年级下册数学日记400字10篇
一天,我突然心血来潮对小区感兴趣,有四个问题困扰着我。小区有多大?一栋楼有多少户?总共有多少户?除楼以外占地多少?
为了解决问题,我进行了调查和测量,发现小区南北长200米,东西宽80米,200*80=16000(米)这样一算,小区占地面积就解决了,大约是16000平方米。
第二个问题每栋楼的户数,就拿我家住的6号楼来说吧!楼高25层,两个单元,两户一个单元,户数是25*2*2=100(户)。7号楼和6号楼一样也是100户,4、5号楼是17层的,每栋楼应有17*2*2=64户;1、2、3号楼是小区最矮的楼了,每栋楼只有11*2*2=44户。
第三个问题把刚才算的数加起来就行了;100+100+64+64+44+44+44=460(户)。
俗话说麻雀虽小,五脏俱全,我们小区绿化、停车场、健身器材、道路一样不少,小区绿化高达30%,平均楼间距40米,银杏树20颗,梧桐树15颗——小区中间还有一个鱼池,每天都有鱼儿在里面游动,可以让人放松身心。说了那么多,回到正题上来,我计算过了,平均每栋楼占地570米,七栋楼加起来570*7=3990(平方米)。除楼以外面积应是16000-3990=12010(平方米)。
数学真是太奇妙了,还有许多知识等待我们去探索、发现。
㈡ 数学名家故事400字5年级
华罗庚
有一次,他跟邻居家的孩子一起出城去玩,他们走着走着;忽然看见路旁有座荒坟,坟旁有许多石人、石马。这立刻引起了华罗庚的好奇心,他非常想去看个究竟。于是他就对邻居家的孩子说:
“那边可能有好玩的,我们过去看看好吗?”
邻居家的孩子回答道:“好吧,但只能呆一会儿,我有点害怕。”
胆大的华罗庚笑着说:“不用怕,世间是没有鬼的。”说完,他首先向荒坟跑去。
两个孩子来到坟前,仔细端详着那些石人、石马,用手摸摸这儿,摸摸那儿,觉得非常有趣。爱动脑筋的华罗庚突然问邻居家的孩子:“这些石人、石马各有多重?”
邻居家的孩子迷惑地望着他说:"我怎么能知道呢?你怎么会问出这样的傻问题,难怪人家都叫你‘罗呆子’。”
华罗庚很不甘心地说道:“能否想出一种办法来计算一下呢?”
邻居家的孩子听到这话大笑起来,说道:“等你将来当了数学家再考虑这个问题吧!不过你要是能当上数学家,恐怕就要日出西山了。”
华罗庚不顾邻家孩子的嘲笑,坚定地说:“以后我一定能想出办法来的。”
当然,计算出这些石人、石马的重量,对于后来果真成为数学家的华罗庚来讲,根本不在话下。
㈢ 五年级下数学故事,300-400字左右。急急急最好.20分钟内回答
牛顿:用心默默的去做每件事
牛顿从小就喜欢读书,非常勤奋,还特别喜欢手工,内家里给他的零用钱,他容都用来购买木工工具。他做了许多精巧的风车、风筝、日晷、漏壶等实用器械。少年时代的牛顿并没有显露出过人的天赋。所不同的是动手能力相当强。他每做一件东西,总是一声不吭地埋头苦干。如果做得不合适就拆了重做,绝不马虎。牛顿非常勤奋,他的学习成绩赶不上别人,特别他一生中的绝大部分时间是在实验室度过的,他经常通宵达旦地做实验,有时一连六个星期都在实验室工作,不分白天和黑夜,直到把实验做完为止。 牛顿虽然是位伟大的科学家,却从来没有骄傲自满过,他谦虚地说:在科学的道路上,我们只是一个在海边玩耍的孩子,偶然拾到一块美丽的石子。至于真理的大海,我还没有发现呢!
牛顿就是这样谦虚,孜孜不倦地钻研学问的!
㈣ 数学家的小故事400字
华罗庚上小学时,一个老师对新上任的老师介绍学校的情况时,说这个学校的学生都是穷人家的孩子,多数是笨蛋……这话深深刺痛了华罗庚的心,他决心要以优异的成绩回敬那位老师。
一天,数学老师出了一道有趣的难题给大家:“有一样东西不知道有多少数量,三个三个地数剩下二个,五个五个地数剩下三个,七个七个地数剩下二个,问这样东西到底有多少?”
全班同学面面相觑答不上来,唯有华罗庚站起来说:“老师,我知道,是‘23’。”全班同学都震惊了,老师也点头称赞。从此,他便爱上了数学课。
正当他求学时,父亲店铺生意日见萧条,无力供他继续读书了,他只好辍学看柜台。他利用一本代数、一本几何、一本只剩下50页的微积分开始了自学。白天没有时间,晚上守着小油灯一遍遍地演算。父亲说他是个“书呆子”,几次逼他把书烧掉,邻居也劝他好好做买卖。
不幸的是,他又患上了可怕的伤寒,医生摇头叹息地叫家人为他准备“后事”。他向死神发起挑战,挣扎着下地干活,左腿又被摔成残废。他还是不气馁,拄着拐杖忍着疼痛进行锻炼。练得能走了,就到一所中学去干杂务,给老师打水、削铅笔,即使这样,他也没有放弃自学。
就在中学工作不久,他开始向报刊投寄数学论文,多次退稿也不灰心。后来他发表了《苏家驹之代数的五次方程式解法不能成立的理由》一文,得到了数学泰斗熊庆来的赏识,很快把他介绍到清华园,安置在自己身边。
(4)生活数学故事400字五年级扩展阅读
华罗庚成长历程
1910年11月12日出生于江苏常州金坛区, 他幼时爱动脑筋,因思考问题过于专心常被同伴们戏称为“罗呆子”。1922年,12岁从县城仁劬小学毕业后,进入金坛县立初中,王维克老师发现其数学才能,并尽力予以培养。
1925年,初中毕业后,就读上海中华职业学校,因拿不出学费而中途退学,退学回家帮助父亲料理杂货铺,故一生只有初中毕业文凭。此后,他用5年时间自学完了高中和大学低年级的全部数学课程。
1927年秋,和吴筱元结婚。1929年冬,他不幸染上伤寒病,落下左腿终身残疾,走路要借助手杖。1929年,华罗庚受雇为金坛中学庶务员,并开始在上海《科学》等杂志上发表论文。
1930年春,华罗庚在上海《科学》杂志上发表《苏家驹之代数的五次方程式解法不能成立之理由》轰动数学界。同年,清华大学数学系主任熊庆来,了解到华罗庚的自学经历和数学才华后,打破常规,让华罗庚进入清华大学图书馆担任馆员。
1931年,在清华大学数学系担任助理。他自学了英、法、德文、日文,在国外杂志上发表了3篇论文。1933年,被破格提升为助教。1934年9月,被提升为讲师。
㈤ 五年级数学日记400字以上
数学日记
今天上午,我正在为数学日记写些什么而烦恼。在网络的知道上闲逛,希望能碰到些启发。突然,知道上的一片文章吸引了我:
“ 八路实验小学六(7)班 徐瑞祥
今天下午,我在《小学生双色课课通》上看到了这样一道题。
一个圆锥底面半径是8分米,高的长度与底面半径的比3:2,这个圆锥的体积是多少立方分米?
分析:这是一道按比例分配的应用题……”
我没多看分析,对着这道题便琢磨开了,咦?圆锥体的面积我没学过怎么计算啊。那这道题我有怎么解呢?我叹了口气,准备继续看完分析,刻我转念又想,这个暑假过了我不久是六年级了吗?若是连这道课课通上的题都不会做。我还算是什么奥数班的啊?不就是名不副实了吗?对,我一定要靠自己把它解出来。
按照往常我在这种题面前一定是在脑子里建立一个模型,可是,对于这道题我却格外谨慎,生怕有个闪失。我在纸上画了一个圆锥的透视效果。定睛一看,咦?这个图形如果是平面图形不就和三角形一样了吗,那这个圆锥的立方面积不就是和它同底同高的圆柱体的面积的2分之1了吗?我一下子喜出望外。原来圆锥体的面积也同容易求的嘛。只要知道圆锥体的高,和底面积不就可以求出了吗?再回到这道题上,它的条件里告诉了你底的半径,就等于告诉了底面积,它说高和底半径的比例是3:2,也就是底半径的长度是高的3分之2。那高不就是半径×3÷2=高。这么说来,高就是12分米,底面积就是200.96立方分米,圆锥体面积就是200.96×12÷2=1205.76立方分米。
“呼,终于被我解出来了。”我长吁了一口气,通过这道题,我也发现了,其实数学中有许多东西是相通的,就像圆锥体面积和是三角形面积一样。其实并不需要知道所有的计算公式,只要可以融会贯通,一样可以解题。
㈥ 求6篇小学五年级下册数学日记(400字左右的)
6月28日 周二
今天中午,我正在做数学暑假作业。写着写着,不幸遇到了一道很难的题,我想了半天也没想出个所以然,这道题是这样的: 有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数。求它的体积。
我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽、高,而它一点也没有提示。这可怎么入手啊!
正当我急得抓耳挠腮之际,我妈妈的一个同事来了。他先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉。于是,他又教我另一种方法:先列出数,再逐一排除。我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字。这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长;一个则是长方体正面,上面除以上一条外另一条 棱长(且长度都为质数)之和。于是,我开始分辩这两个数各是哪个数。
最后,我得到了结果,为374立方厘米。我的算式是:209=11×19 19=2+17 11×2×17=374(立方厘米)
后来,我又用我本学期学过的知识:分解质因数验算了这道题,结果一模一样。
解出这道题后,我心里比谁都高兴。我还明白了一个道理:数学充满了奥秘,等待着我们去探求。
8月6日 周六
今天晚上,我看见一道会迷惑人的数学题,题目:37个同学要渡河,渡口有一只能乘上5人的空小船,他们要全部渡过河,至少要使用这只小船多少次? 粗心的人往往会忽略“空小船”,就是忘了要有一个撑船,那么每次只能乘4人。这样37人减去一位撑船的同学,剩36位同学,36除以4等于9,最后一次到对岸当船夫的同学也上岸4,所以至少要走9趟。
8月9日 周二
傍晚,我在奥林匹克书中看到一道难题:果园里的苹果树是梨树的3倍,老王师傅每天给50棵苹果树20棵梨树施肥,几天后,梨树全部施上肥,但苹果树还剩下80棵没施肥。请问:果园里有苹果树和梨树各多少棵?
我没有被这道题吓倒,难题能激发我的兴趣。我想,苹果树是梨树的3倍,假如要使两种树同一天施完肥,老王师傅就应该每天给“20×3”棵苹果树和20棵梨树施肥。而实际他每天只给50棵苹果树施肥,差了10棵,最后共差了80棵,从这里可以得知,老王师傅已经施了8天肥。一天20棵梨树,8天就是160棵梨树,再根据第一个条件,可以知道苹果树是480棵。这就是用假设的思路来解题,因此我想,假设法实在是一种很好的解题方法。
8月11日 周四
今天我又遇到一道数学难题,费了好大的劲才解出来。题目是:两棵树上共有30只小鸟,乙树上先飞走4只,这时甲树飞向乙树3只,两棵树上的小鸟刚好相等。两棵树上原来各有几只小鸟? 我一看完题目,就知道这是还原问题,于是用还原问题的方法解。可验算时却发现错了。我便更加认真地重新做起来。我想,少了4只后一样多,那一半是13只,还原乙树是14只;甲树就是16只。算式为:(30—4)÷2=13(只);13—3+4=14(只);30—14=16(只)。答案为:甲树16只,乙树14只。 通过解这道题,我明白了,无论做什么题,都要细心,否则,即使掌握了解题方法,结果还会出错。
㈦ 小学五年级的数学日记400字以上
你们知道算式:91+92+93+94+95+96+97有几种解法吗?也许你会认为只有一种或两种,那让我告诉你们这题有三种解法.
第一种:这几个数是公差为1的可用等差数列求和公式直接计算.
(91+97)*7/2=188*7/2=658
第二种:因这几个,都很接近100,我们把这7个数看成100相加,这样多加了9+8+7+6+5+4+3,最后用700减去这几个数的和即可.
91+92+93+94+95+96+97=100*7-(9+8+7+6+5+4+3)=700-42=658
第三种:这7个连续的自然数中,94在最中间,第一个数91比最后一个数97少6,再把6平分给91,使91与97变成2个94,同样,92与96,93与95都可变成94,这样7个数就变成了7个94,原题变成:
91+92+93+94+95+96+97=94*7=658
今天我又遇到一道数学难题,费了好大的劲才解出来.题目是:两棵树上共有30只小鸟,乙树上先飞走4只,这时甲树飞向乙树3只,两棵树上的小鸟刚好相等.两棵树上原来各有几只小鸟?
我一看完题目,就知道这是还原问题,于是用还原问题的方法解.可验算时却发现错了.我便更加认真地重新做起来.我想,少了4只后一样多,那一半是13只,还原乙树是14只;甲树就是16只.算式为:(30―4)÷2=13(只);13―3+4=14(只);30―14=16(只).答案为:甲树16只,乙树14只.
通过解这道题,我明白了,无论做什么题,都要细心,否则,即使掌握了解题方法,结果还会出错.
㈧ 400字到500字的数学小故事
数学家高斯小时候的故事
从一加到一百
高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。
高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。
高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音后,就自己学着读起书来。
七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的就把石板〔当时通行,写字用〕面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。
㈨ 生活中的数学 故事 7篇 不少400字、
今天下午,我和妈妈来到超市买东西。
当我们买完所需的东西之后,刚要离开,我看见货架上正好摆着火腿肠,于是我让妈妈买些火腿肠,妈妈同意了。可是刚走几步,我又看见货架上摆着一包一包的,同样品牌,同样重量,里面有10根,每包4.30元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,就是40角,等于4元,而整包的要4.30元,多了3毛钱,所以我决定买散装的。我把我计算的过程说给妈妈听,妈妈听了直夸我爱动脑。 还有,今天晚上,我看见一道会迷惑人的数学题,题目:37个同学要渡河,渡口有一只能乘上5人的空小船,他们要全部渡过河,至少要使用这只小船多少次?
粗心的人往往会忽略“空小船”,就是忘了要有一个撑船,那么每次只能乘4人。这样37人减去一位撑船的同学,剩36位同学,36除以4等于9,最后一次到对岸当船夫的同学也上岸4,所以至少要走9趟。